New real-variable characterizations of Musielak-Orlicz Hardy spaces

被引:69
|
作者
Liang, Yiyu [1 ]
Huang, Jizheng [2 ]
Yang, Dachun [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] N China Univ Technol, Coll Sci, Beijing 100144, Peoples R China
基金
中国国家自然科学基金;
关键词
Musielak-Orlicz function; Hardy space; Atom; Maximal function; Littlewood-Paley g-function; Littlewood-Paley g(lambda)*-function; INEQUALITIES; OPERATORS; BMO;
D O I
10.1016/j.jmaa.2012.05.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let phi : R-n x [0, infinity) -> [0, infinity) be such that phi(x,.) is an Orlicz function and (phi(., t) is a Muckenhoupt A(infinity)(R-n) weight. The Musielak-Orlicz Hardy space H-phi(R-n) is defined to be the space of all f is an element of s'(R-n) such that the grand maximal function f* belongs to the Musielak-Orlicz space L phi(R-n). Luong Dang Ky established its atomic characterization. In this paper, the authors establish some new real-variable characterizations of H-phi(R-n) in terms of the vertical or the non-tangential maximal functions, or the Littlewood-Paley g-function or g(lambda)*-function, via first establishing a Musielak-Orlicz Fefferman-Stein vector-valued inequality. Moreover, the range of lambda in the g(lambda)*-function characterization of H-phi(R-n) coincides with the known best results, when H-phi(R-n) is the classical Hardy space H-p(R-n), with p is an element of (0, 1], or its weighted variant. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:413 / 428
页数:16
相关论文
共 50 条
  • [1] REAL-VARIABLE CHARACTERIZATIONS OF MUSIELAK-ORLICZ HARDY SPACES ON SPACES OF HOMOGENEOUS TYPE
    Fu, Xing
    Ma, Tao
    Yang, Dachun
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2020, 45 : 343 - 410
  • [2] Real-variable characterizations of anisotropic product Musielak-Orlicz Hardy spaces
    XingYa Fan
    JianXun He
    BaoDe Li
    DaChun Yang
    Science China Mathematics, 2017, 60 : 2093 - 2154
  • [3] Real-variable characterizations of anisotropic product Musielak-Orlicz Hardy spaces
    FAN XingYa
    HE JianXun
    LI BaoDe
    YANG DaChun
    Science China(Mathematics), 2017, 60 (11) : 2093 - 2154
  • [4] Real-variable characterizations of anisotropic product Musielak-Orlicz Hardy spaces
    Fan XingYa
    He JianXun
    Li BaoDe
    Yang DaChun
    SCIENCE CHINA-MATHEMATICS, 2017, 60 (11) : 2093 - 2154
  • [5] NEW REAL-VARIABLE CHARACTERIZATIONS OF ANISOTROPIC WEAK HARDY SPACES OF MUSIELAK-ORLICZ TYPE
    Qi, Chunyan
    Zhang, Hui
    Li, Baode
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (02) : 607 - 637
  • [6] Real-Variable Theory of Musielak-Orlicz Hardy Spaces Preface
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : V - +
  • [7] WAVELET CHARACTERIZATIONS OF MUSIELAK-ORLICZ HARDY SPACES
    Fu, Xing
    Yang, Dachun
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2018, 12 (04): : 1017 - 1046
  • [8] Real-variable characterizations of Musielak-Orlicz-Hardy spaces associated with Schrodinger operators on domains
    Chang, Der-Chen
    Fu, Zunwei
    Yang, Dachun
    Yang, Sibei
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (03) : 533 - 569
  • [9] Riesz Transform Characterizations of Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 109 - 144
  • [10] Maximal Function Characterizations of Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 59 - 70