Effects of cell construction parameters on the performance of lithium/sulfur cells

被引:7
作者
Song, Min-Kyu [1 ,2 ]
Zhang, Yuegang [1 ]
Cairns, Elton J. [2 ,3 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA
关键词
sulfur; graphene oxide; nanocomposites; electrolyte; binder; lithium batteries; POSITIVE-ELECTRODE MATERIALS; SULFUR BATTERIES; GRAPHENE OXIDE; LI-ION; CATHODE; CHALLENGES; BINDER; NANOTUBES;
D O I
10.1002/aic.14947
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Current lithium-ion batteries are predicted to be unable to provide the specific energy required to meet the ever-increasing demands of rapidly emerging technologies. Due to a high theoretical specific capacity of 1675 mAh/g, sulfur has gained much attention as a promising positive electrode material for high specific energy rechargeable batteries. Although the lithium/sulfur cell has been studied for many years and continues to receive much attention today as an alternative power source for zero-emission vehicles and advanced electronic devices, the realization of this novel cell's promise as a commercial product has yet to be successful. The major problems with sulfur electrodes involve: (1) the dissolution of sulfur (as polysulfides) and the resulting diffusion of dissolved polysulfides and (2) the deposition of insulating products (including Li2S) on both the negative and the positive electrodes. These solid deposits can physically block the electrode reaction sites, thus passivating the electrode surfaces. Another important problem is the large volume change that occurs with the conversion of S to Li2S. It is important to understand that the performance of Li/S cells is hampered by linked chemical and mechanical degradations and both degradation mechanisms must be correctly alleviated in order to markedly improve current-technology Li/S cells. In this study, improved cycling performance via the reactive functional groups on graphene oxide to successfully immobilize sulfur and lithium polysulfides during operation has been demonstrated. The use of a new electrolyte and binder leads to improved cell performance in terms of high-rate capability (up to at least 2 C) and good reversibility (S Li2S), yielding at least 800 cycles have also been demonstrated. (c) 2015 American Institute of Chemical Engineers AIChE J, 61: 2749-2756, 2015
引用
收藏
页码:2749 / 2756
页数:8
相关论文
共 41 条
[1]  
[Anonymous], 2011, ANGEW CHEM, DOI DOI 10.1002/ANGE.201100637
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[4]   Nanostructured Li2S-C Composites as Cathode Material for High-Energy Lithium/Sulfur Batteries [J].
Cai, Kunpeng ;
Song, Min-Kyu ;
Cairns, Elton J. ;
Zhang, Yuegang .
NANO LETTERS, 2012, 12 (12) :6474-6479
[5]   Structural factors of sulfur cathodes with poly(ethylene oxide) binder for performance of rechargeable lithium sulfur batteries [J].
Cheon, SE ;
Cho, JH ;
Ko, KS ;
Kwon, CW ;
Chang, DR ;
Kim, HT ;
Kim, SW .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (11) :A1437-A1441
[6]  
Doug T., 2003, FREEDOMCAR PROGRAM R
[7]   Positive Electrode Materials for Li-Ion and Li-Batteries [J].
Ellis, Brian L. ;
Lee, Kyu Tae ;
Nazar, Linda F. .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :691-714
[8]   Understanding the degradation mechanism of rechargeable lithium/sulfur cells: a comprehensive study of the sulfur-graphene oxide cathode after discharge-charge cycling [J].
Feng, Xuefei ;
Song, Min-Kyu ;
Stolte, Wayne C. ;
Gardenghi, David ;
Zhang, Duo ;
Sun, Xuhui ;
Zhu, Junfa ;
Cairns, Elton J. ;
Guo, Jinghua .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (32) :16931-16940
[9]   Effects of Liquid Electrolytes on the Charge-Discharge Performance of Rechargeable Lithium/Sulfur Batteries: Electrochemical and in-Situ X-ray Absorption Spectroscopic Studies [J].
Gao, Jie ;
Lowe, Michael A. ;
Kiya, Yasuyuki ;
Abruna, Hector D. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (50) :25132-25137
[10]   The Li-Ion Rechargeable Battery: A Perspective [J].
Goodenough, John B. ;
Park, Kyu-Sung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1167-1176