An arbitrage-free model of the yield gap

被引:1
|
作者
Spencer, PD [1 ]
机构
[1] Univ London Birkbeck Coll, London WC1E 7HX, England
来源
MANCHESTER SCHOOL | 1999年 / 67卷
关键词
D O I
10.1111/1467-9957.67.s1.6
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper I adapt the perpetual bond valuation model of Cox, Ingersoll and Ross (Journal of Finance, Vol. 35, No. 2 (1980), pp. 389-404) to allow for non-linear mean reversion in the short-term interest rate. In their model, the consol price is inversely proportional to the short-term interest rate. Allowing appropriately for mean reversion has the effect of adding a positive intercept constant to this elementary valuation formula. This modification also gives the short-term rate a Gamma distribution in steady state. The model is used to develop a coherent econometric model of the relationship between short- and long-term rates in the USA and Japan. In contrast, the Cox, Ingersoll and Ross 1985 model (Econometrica, Vol. 53, No. 2 (1985), pp. 385-407) fails to satisfy the relevant cross-equation restrictions.
引用
收藏
页码:116 / 133
页数:18
相关论文
共 50 条
  • [1] Arbitrage-free Nelson–Siegel model for multiple yield curves
    Riccardo Brignone
    Christoph Gerhart
    Eva Lütkebohmert
    Mathematics and Financial Economics, 2022, 16 : 239 - 266
  • [2] Arbitrage-free Nelson-Siegel model for multiple yield curves
    Brignone, Riccardo
    Gerhart, Christoph
    Luetkebohmert, Eva
    MATHEMATICS AND FINANCIAL ECONOMICS, 2022, 16 (02) : 239 - 266
  • [3] Arbitrage-free XVA
    Bichuch, Maxim
    Capponi, Agostino
    Sturm, Stephan
    MATHEMATICAL FINANCE, 2018, 28 (02) : 582 - 620
  • [4] A multidimensional subdiffusion model:An arbitrage-free market
    李国华
    张红
    罗懋康
    Chinese Physics B, 2012, (12) : 561 - 567
  • [5] Haar extensions of arbitrage-free financial markets to markets that are complete and arbitrage-free
    Bogachëva, MN
    Pavlov, IV
    RUSSIAN MATHEMATICAL SURVEYS, 2002, 57 (03) : 581 - 583
  • [6] A multidimensional subdiffusion model: An arbitrage-free market
    Li Guo-Hua
    Zhang Hong
    Luo Mao-Kang
    CHINESE PHYSICS B, 2012, 21 (12)
  • [7] Characterization of arbitrage-free markets
    Strasser, E
    ANNALS OF APPLIED PROBABILITY, 2005, 15 (1A): : 116 - 124
  • [8] Arbitrage-free relative Nelson-Siegel model
    Ishii, Hokuto
    FINANCE RESEARCH LETTERS, 2020, 37
  • [9] From arbitrage to arbitrage-free implied volatilities
    Grzelak, Lech A.
    Oosterlee, Cornelis W.
    JOURNAL OF COMPUTATIONAL FINANCE, 2017, 20 (03) : 31 - 49
  • [10] A parsimonious model for generating arbitrage-free scenario trees
    Consiglio, Andrea
    Carollo, Angelo
    Zenios, Stavros A.
    QUANTITATIVE FINANCE, 2016, 16 (02) : 201 - 212