SEMIPRIME LIE RINGS OF (ANTI-)SYMMETRIC DERIVATIONS OF COMMUTATIVE RINGS

被引:1
作者
Liu, Cheng-Kai [1 ]
Liau, Pao-Kuei [1 ]
机构
[1] Natl Changhua Univ Educ, Dept Math, Changhua 500, Taiwan
关键词
Derivation; Involution; Lie ring; -Semiprime; ALGEBRAS; IDEALS;
D O I
10.1080/00927872.2012.749261
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a 2-torsion free commutative ring with involution, and a nonzero derivation of R. Let S be the set of symmetric elements in R, and let K be the set of anti-symmetric elements in R. In this article, we investigate the semiprimeness of the Lie rings S when is symmetric and K when is anti-symmetric.
引用
收藏
页码:1747 / 1756
页数:10
相关论文
共 17 条
[1]   RADICALS OF CROSSED-PRODUCTS OF ENVELOPING-ALGEBRAS [J].
BERGEN, J ;
MONTGOMERY, S ;
PASSMAN, DS .
ISRAEL JOURNAL OF MATHEMATICS, 1987, 59 (02) :167-184
[2]   L-prime rings need not be primary [J].
Chebotar, Mikhail A. ;
Ke, Wen-Fong ;
Lee, Pjek-Hwee .
COMMUNICATIONS IN ALGEBRA, 2008, 36 (03) :893-904
[3]   Prime Lie rings of derivations of commutative rings [J].
Chebotar, Mikhail A. ;
Lee, Pjek-Hwee .
COMMUNICATIONS IN ALGEBRA, 2006, 34 (12) :4339-4344
[4]  
JORDAN CR, 1978, J LOND MATH SOC, V18, P39
[5]   LIE RINGS OF DERIVATIONS OF ASSOCIATIVE RINGS [J].
JORDAN, CR ;
JORDAN, DA .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1978, 17 (FEB) :33-41
[6]  
JORDAN DA, 1978, J LOND MATH SOC, V18, P443
[7]  
JORDAN DA, 1986, J LOND MATH SOC, V33, P33
[8]   On the simplicity of Lie algebras of derivations of commutative algebras [J].
Jordan, DA .
JOURNAL OF ALGEBRA, 2000, 228 (02) :580-585
[9]  
JORDAN DA, 1980, J AUSTR MATH SOC, V29, P153
[10]   Prime Lie rings of derivations of commutative rings II [J].
Lee, Pjek-Hwee ;
Liu, Cheng-Kai .
COMMUNICATIONS IN ALGEBRA, 2007, 35 (04) :1205-1213