On critical singular quasilinear elliptic problem when n = p

被引:3
作者
Yao, YX [1 ]
Shen, YT [1 ]
机构
[1] S China Univ Technol, Sch Math Sci, Guangzhou 510640, Peoples R China
关键词
elliptic equation; Hardy inequality; critical singularity; Mountain Pass Lemma;
D O I
10.1016/S0252-9602(06)60043-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article deals with the problem -Delta(p)u = lambda \u\(p-2)u/\x\(p) ln(p) R/\x\ + f(x, u), x is an element of Omega; u = 0, x is an element of partial derivative Omega, where n = p. The authors prove that a Hardy inequality and the constant (p/p-1)(p) optimal. They also prove the existence of a nontrivial solution of the above mentioned problem by using the Mountain Pass Lemma.
引用
收藏
页码:209 / 219
页数:11
相关论文
共 12 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]  
Azorero JPG, 1998, J DIFFER EQUATIONS, V144, P441
[3]  
Brezis H, 1998, B UNIONE MAT ITAL, V1B, P223
[4]  
CAFFARELLI L, 1984, COMPOS MATH, V53, P259
[5]   Some existence results of solutions for p-Laplacian [J].
Chen, ZH ;
Shen, YT ;
Yao, YX .
ACTA MATHEMATICA SCIENTIA, 2003, 23 (04) :487-496
[6]   ELLIPTIC-EQUATIONS IN R(2) WITH NONLINEARITIES IN THE CRITICAL GROWTH RANGE [J].
DEFIGUEIREDO, DG ;
MIYAGAKI, OH ;
RUF, B .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1995, 3 (02) :139-153
[7]   VARIATIONAL PRINCIPLE [J].
EKELAND, I .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 47 (02) :324-353
[8]   Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents [J].
Ghoussoub, N ;
Yuan, C .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (12) :5703-5743
[9]   SHARP FORM OF AN INEQUALITY BY N TRUDINGER [J].
MOSER, J .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1971, 20 (11) :1077-&
[10]  
Shen Y., 1964, ADV MATH, V7, P321