Affine Osserman connections and their Riemann extensions

被引:37
作者
García-Río, E
Kupeli, DN
Vázquez-Abal, ME
Vázquez-Lorenzo, R
机构
[1] Univ Santiago de Compostela, Fac Matemat, Santiago De Compostela 15706, Spain
[2] Middle E Tech Univ, Dept Math, TR-06531 Ankara, Turkey
[3] Univ Santiago de Compostela, Dept Xeometria & Topoloxia, Santiago De Compostela, Spain
关键词
Osserman space; affine connection; Riemann extensions;
D O I
10.1016/S0926-2245(99)00029-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Osserman property is studied for affine torsion-free connections with special attention to the 2-dimensional case. As an application, examples of nonsymmetric and even not locally homogeneous Osserman pseudo-Riemannian metrics are constructed on the cotangent bundle of a manifold equipped with a torsionfree connection by looking at their Riemann extensions. Also, timelike and spacelike Osserman conditions are analyzed for general pseudo-Riemannian manifolds showing that they are equivalent.
引用
收藏
页码:145 / 153
页数:9
相关论文
共 17 条
[1]  
ANDERSON J, 1992, MEM AM MATH SOC, V98, P1
[2]   A note on Osserman Lorentzian manifolds [J].
Blazic, N ;
Bokan, N ;
Gilkey, P .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1997, 29 :227-230
[3]  
BLAZIC N, 1994, IZV VYSSH UCHEBN ZAV, V9, P8
[4]  
BLAZIC N, IN PRESS CHARACTERIZ
[5]  
BLAZIC N, IN PRESS GEOMETRY OS
[6]   Nonsymmetric Osserman indefinite Kahler manifolds [J].
Bonome, A ;
Castro, R ;
Garcia-Rio, E ;
Hervella, L ;
Vazquez-Lorenzo, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (09) :2763-2769
[7]  
CHI QS, 1988, J DIFFER GEOM, V28, P187
[8]   Nonsymmetric Osserman pseudo-Riemannian manifolds [J].
Garcia-Rio, E ;
Vazquez-Abal, ME ;
Vazquez-Lorenzo, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (09) :2771-2778
[9]   On a problem of Osserman in Lorentzian geometry [J].
GarciaRio, E ;
Kupeli, DN ;
VazquezAbal, ME .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1997, 7 (01) :85-100
[10]   ISOPARAMETRIC GEODESIC SPHERES AND A CONJECTURE OF OSSERMAN CONCERNING THE JACOBI OPERATOR [J].
GILKEY, P ;
SWANN, A ;
VANHECKE, L .
QUARTERLY JOURNAL OF MATHEMATICS, 1995, 46 (183) :299-320