Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods

被引:259
作者
Sopharak, Akara [1 ]
Uyyanonvara, Bunyarit [1 ]
Barman, Sarah [2 ]
Williamson, Thomas H. [3 ]
机构
[1] Thammasat Univ, SIIT, Dept Informat Technol, Muang 12000, Pathumthani, Thailand
[2] Kingston Univ, Fac Comp Informat Syst & Math, Kingston upon Thames KT1 2EE, Surrey, England
[3] St Thomas Hosp, Dept Ophthalmol, London SE1 7EH, England
关键词
Diabetic retinopathy; Exudates; Retinal image; Non-dilated retinal images; Morphology;
D O I
10.1016/j.compmedimag.2008.08.009
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Diabetic retinopathy is a complication of diabetes that is caused by changes in the blood vessels of the retina. The symptoms call blur or distort the patient's vision and are a main cause of blindness. Exudates are one of the primary signs of diabetic retinopathy. Detection of exudates by ophthalmologists normally requires pupil dilation using a chemical Solution which takes time and affects patients. This paper investigates and proposes a set of optimally adjusted morphological operators 10 be used for exudate detection on diabetic retinopathy patients' non-dilated, pupil and low-contrast images. These automatically detected exudates are validated by comparing with expert ophthalmologists' hand-drawn ground-truths. The results are successful and the sensitivity and specificity for Our exudate detection is 80% and 99.5%, respectively. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:720 / 727
页数:8
相关论文
共 19 条
[1]  
[Anonymous], 1991, Ophthalmology, V98, P786
[2]   Comparison of time-domain OCT and fundus photographic assessments of retinal thickening in eyes with diabetic macular edema [J].
Davis, Matthew D. ;
Bressler, Susan B. ;
Aiello, Lloyd Paul ;
Bressler, Neil M. ;
Browning, David J. ;
Flaxel, Christina J. ;
Fong, Donald S. ;
Foster, William J. ;
Glassman, Adam R. ;
Hartnett, Mary Elizabeth R. ;
Kollman, Craig ;
Li, Helen K. ;
Qin, Haijing ;
Scott, Ingrid U. .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2008, 49 (05) :1745-1752
[3]   Screening for diabetic retinopathy using computer based image analysis and statistical classification [J].
Ege, BM ;
Hejlesen, OK ;
Larsen, OV ;
Moller, K ;
Jennings, B ;
Kerr, D ;
Cavan, DA .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2000, 62 (03) :165-175
[4]   Automatic detection of diabetic retinopathy using an artificial neural network: A screening tool [J].
Gardner, GG ;
Keating, D ;
Williamson, TH ;
Elliott, AT .
BRITISH JOURNAL OF OPHTHALMOLOGY, 1996, 80 (11) :940-944
[5]  
GONZALES RC, 1993, DIGITAL IMAGE PROCES, P75
[6]   Quantitative analysis of retinopathy in type 2 diabetes: identification of prognostic parameters for developing visual loss secondary to diabetic maculopathy [J].
Hove, MN ;
Kristensen, JK ;
Lauritzen, T ;
Bek, T .
ACTA OPHTHALMOLOGICA SCANDINAVICA, 2004, 82 (06) :679-685
[7]  
Hsu W, 2001, PROC CVPR IEEE, P246
[8]  
JAVITT JC, 1991, OPHTHALMOLOGY, V98, P1565
[9]  
Kanski J., 1997, DIABETIC RETINOPATHY
[10]   A Bayesian network based sequential inference for diagnosis of diseases from retinal images [J].
Mitra, SK ;
Lee, TW ;
Goldbaum, M .
PATTERN RECOGNITION LETTERS, 2005, 26 (04) :459-470