H1-Stability and Convergence of the FE, FV and FD Methods for an Elliptic Equation

被引:14
作者
He, Yinnian [1 ]
Feng, Xinlong [2 ]
机构
[1] Xi An Jiao Tong Univ, Ctr Computat Geosci, Sch Math & Stat, Xian 710049, Peoples R China
[2] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
基金
中国博士后科学基金;
关键词
Finite element method; finite difference method; finite volume method; Poisson equation; stability and convergence; FINITE-VOLUME METHODS; ELEMENT;
D O I
10.4208/eajam.180313.300513a
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain the coefficient matrices of the finite element (FE), finite volume (FV) and finite difference (FD) methods based on P-1-conforming elements on a quasi-uniform mesh, in order to approximately solve a boundary value problem involving the elliptic Poisson equation. The three methods are shown to possess the same H-1-stability and convergence. Some numerical tests are made, to compare the numerical results from the three methods and to review our theoretical results.
引用
收藏
页码:154 / 170
页数:17
相关论文
共 18 条
[1]  
[Anonymous], MODERN NUMERICAL MET
[2]  
[Anonymous], 2003, ITERATIVE METHODS SP, DOI DOI 10.1137/1.9780898718003
[3]   SOME ERROR-ESTIMATES FOR THE BOX METHOD [J].
BANK, RE ;
ROSE, DJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :777-787
[4]   Convergence of a compact scheme for the pure streamfunction formulation of the unsteady Navier-Stokes system [J].
Ben-Artzi, Matania ;
Croisille, Jean-Pierre ;
Fishelov, Dalia .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (05) :1997-2024
[5]  
CAI ZQ, 1991, NUMER MATH, V58, P713
[6]   A NEW CLASS OF HIGH ORDER FINITE VOLUME METHODS FOR SECOND ORDER ELLIPTIC EQUATIONS [J].
Chen, Long .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 47 (06) :4021-4043
[7]  
CIARLET P. G., 2002, Classics in Appl. Math., V40
[8]   On the accuracy of the finite volume element method based on piecewise linear polynomials [J].
Ewing, RE ;
Lin, T ;
Lin, YP .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (06) :1865-1888
[9]   ON 1ST AND 2ND ORDER BOX SCHEMES [J].
HACKBUSCH, W .
COMPUTING, 1989, 41 (04) :277-296
[10]  
Li R., 2000, GEN DIFFERENCE METHO