INVISCID LIMIT TO THE SHOCK WAVES FOR THE FRACTAL BURGERS EQUATION

被引:0
作者
Akopian, Sona [1 ]
Kang, Moon-Jin [2 ]
Vasseur, Alexis [3 ]
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[2] Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon 34141, South Korea
[3] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
关键词
fractal Burgers equation; fractional Laplacian; scalar conservation laws; shock waves; inviscid limit; large perturbation; relative entropy; RELATIVE ENTROPY METHOD; CONSERVATION-LAWS; STABILITY; SYSTEMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show the vanishing viscosity limit to entropy shocks for the fractal Burgers equation in one space dimension. More precisely, we quantify the rate of convergence of the inviscid limit in L-2 for large initial perturbations around the entropy shock on any bounded time interval. This is the first result on the inviscid limit to entropy shock for the fractal Burgers equation with the quantified convergence, for large initial perturbations.
引用
收藏
页码:1477 / 1491
页数:15
相关论文
共 27 条
[1]   Entropy formulation for fractal conservation laws [J].
Alibaud, Nathael .
JOURNAL OF EVOLUTION EQUATIONS, 2007, 7 (01) :145-175
[2]   ASYMPTOTIC PROPERTIES OF ENTROPY SOLUTIONS TO FRACTAL BURGERS EQUATION [J].
Alibaud, Nathael ;
Imbert, Cyril ;
Karch, Grzegorz .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (01) :354-376
[3]   Fractal Burgers equations [J].
Biler, P ;
Funaki, T ;
Woyczynski, WA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 148 (01) :9-46
[4]   Regularity of solutions for the critical N-dimensional Burgers' equation [J].
Chan, Chi Hin ;
Czubak, Magdalena .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (02) :471-501
[5]   EXISTENCE OF TRAVELLING WAVES IN THE FRACTIONAL BURGERS EQUATION [J].
Chmaj, Adam .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 97 (01) :102-109
[6]   SHORT-TIME STABILITY OF SCALAR VISCOUS SHOCKS IN THE INVISCID LIMIT BY THE RELATIVE ENTROPY METHOD [J].
Choi, Kyudong ;
Vasseur, Alexis F. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (02) :1405-1418
[7]  
DAFERMOS CM, 1979, ARCH RATION MECH AN, V70, P167, DOI 10.1007/BF00250353
[8]   UNIQUENESS OF SOLUTIONS TO HYPERBOLIC CONSERVATION-LAWS [J].
DIPERNA, RJ .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1979, 28 (01) :137-188
[9]   Global solution and smoothing effect for a non-local regularization of a hyperbolic equation [J].
Droniou, J ;
Gallouet, T ;
Vovelle, J .
JOURNAL OF EVOLUTION EQUATIONS, 2003, 3 (03) :499-521
[10]  
Droniou J., 2003, ELECTRON J DIFFER EQ, V2003, P1