Dynamical behavior of a stochastic two-species Monod competition chemostat model

被引:51
作者
Sun, Shulin [1 ]
Sun, Yaru [1 ]
Zhang, Guang [2 ]
Liu, Xinzhi [3 ]
机构
[1] Shanxi Normal Univ, Sch Math & Comp Sci, Linfen 041004, Peoples R China
[2] Tianjin Univ Commerce, Sch Sci, Tianjin 300134, Peoples R China
[3] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
基金
中国国家自然科学基金;
关键词
Stochastic chemostat model; Mean reverting process; Ito's formula; Asymptotic behavior; Stationary distribution; BREAK-EVEN CONCENTRATION; STATIONARY DISTRIBUTION; POPULATION SYSTEMS; EPIDEMIC MODEL; VARIABLE YIELD; PERTURBATION; EXTINCTION;
D O I
10.1016/j.amc.2016.11.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies a stochastic two -species Monod competition chemostat model which is subject to environment noises. Such noises are described by independent standard Brownian motions. It proves that the initial value problem of the model has a unique positive global solution. However, unlike the corresponding deterministic model, the stochastic model no longer has positive equilibrium points. The asymptotic behaviors and the steady state distributions are established by using Ito's formula, Lyaponov method and Gronwall inequality. In addition, numerical simulations are given to illustrate the theoretical results. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:153 / 170
页数:18
相关论文
共 34 条
[1]  
[Anonymous], 2001, Matrix Analysis and Applied Linear Algebra
[2]  
Arnold L., 1972, STOCHASTIC DIFFERENT
[3]   The stochastic SEIR model before extinction: Computational approaches [J].
Artalejo, J. R. ;
Economou, A. ;
Lopez-Herrero, M. J. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 265 :1026-1043
[4]   HARVESTING NATURAL-POPULATIONS IN A RANDOMLY FLUCTUATING ENVIRONMENT [J].
BEDDINGTON, JR ;
MAY, RM .
SCIENCE, 1977, 197 (4302) :463-465
[5]   Stochastic modeling of the chemostat [J].
Campillo, F. ;
Joannides, M. ;
Larramendy-Valverde, I. .
ECOLOGICAL MODELLING, 2011, 222 (15) :2676-2689
[6]   New result on the model-based biological control of the chemostat [J].
Dimitrova, Neli S. ;
Krastanov, Mikhail I. .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 237 :686-694
[7]   Extensions of the chemostat model with flocculation [J].
Fekih-Salem, R. ;
Harmand, J. ;
Lobry, C. ;
Rapaport, A. ;
Sari, T. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 397 (01) :292-306
[8]  
Friedman A., 1976, STOCHASTIC DIFERENTI
[9]   A modeling approach of the chemostat [J].
Fritsch, Coralie ;
Harmand, Jerome ;
Campillo, Fabien .
ECOLOGICAL MODELLING, 2015, 299 :1-13
[10]  
Gard T.C., 1987, INTRO STOCHASTIC DIF