Inhibited combustion of graphene paper by in situ phosphorus doping and its application for fire early-warning sensor

被引:60
作者
Chen, Gongqing [1 ]
Yuan, Bihe [1 ]
Wang, Yong [1 ]
Shang, Sheng [1 ]
Chen, Xianfeng [1 ]
Tao, Hongji [1 ]
Zhan, Yuanyuan [1 ]
机构
[1] Wuhan Univ Technol, Sch Safety Sci & Emergency Management, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
graphene oxide paper; phosphoric acid; flame resistance; phosphorus doping; fire-warning response; FLAME-RETARDANT; GRAPHITE OXIDE; DOPED GRAPHENE; PHYTIC ACID; REDUCTION; FLAMMABILITY; PERFORMANCE; RESISTANCE; BEHAVIOR; HAZARDS;
D O I
10.1016/j.sna.2020.112111
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Although traditional fire detectors are widely used in many occasions, they still show some limitations, such as slow fire response and poor resistance to severe conditions. Thus, it is urgent to design and exploit early fire-warning device with ultrafast response and flame-retardant ability to provide timely and fast alarm. Herein, graphene oxide paper functionalized with phosphoric acid (GO-PA) is fabricated by a facile and environmentally friendly water evaporation-induced self-assembly approach. Based on the flame-induced electrical resistance transformation characteristic of GO-PA, a fire-warning detector is designed to reliably monitor early fire. Fire alarm can be triggered within 0.5 s when GO-PA samples are attacked by fire. The GO-PA composite paper is more sensitive than GO-based fire sensors reported in the literature. Phosphorus atoms are in situ doped into graphene structure during flame exposure. Combustion reaction of GO is significantly retarded by the incorporated PA, thus fire duration time of GO is greatly improved. This work paves a new way to improve fire detection performance of GO-based sensors. This work provides a guide for the development of advanced fire detection and early-warning sensors to provide reliable and continuous alarm signals. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 62 条
[1]   Mussel-inspired functionalization of electrochemically exfoliated graphene: Based on self-polymerization of dopamine and its suppression effect on the fire hazards and smoke toxicity of thermoplastic polyurethane [J].
Cai, Wei ;
Wang, Junling ;
Pan, Ying ;
Guo, Wenwen ;
Mu, Xiaowei ;
Feng, Xiaming ;
Yuan, Bihe ;
Wang, Xin ;
Hu, Yuan .
JOURNAL OF HAZARDOUS MATERIALS, 2018, 352 :57-69
[2]   Self-Assembled Free-Standing Graphite Oxide Membrane [J].
Chen, Chengmeng ;
Yang, Quan-Hong ;
Yang, Yonggang ;
Lv, Wei ;
Wen, Yuefang ;
Hou, Peng-Xiang ;
Wang, Maozhang ;
Cheng, Hui-Ming .
ADVANCED MATERIALS, 2009, 21 (29) :3007-3011
[3]   Fire Alarm Wallpaper Based on Fire-Resistant Hydroxyapatite Nanowire Inorganic Paper and Graphene Oxide Thermosensitive Sensor [J].
Chen, Fei-Fei ;
Zhu, Ying-Jie ;
Chen, Feng ;
Dong, Li-Ying ;
Yang, Ri-Long ;
Xiong, Zhi-Chao .
ACS NANO, 2018, 12 (04) :3159-3171
[4]   Renewable biomass gel reinforced core-shell dry water material as novel fire extinguishing agent [J].
Chen, Xianfeng ;
Fan, Ao ;
Yuan, Bihe ;
Sun, Yaru ;
Zhang, Ying ;
Niu, Yi .
JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2019, 59 :14-22
[5]   Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials [J].
Compton, Owen C. ;
Nguyen, SonBinh T. .
SMALL, 2010, 6 (06) :711-723
[6]   Gas barrier performance of graphene/polymer nanocomposites [J].
Cui, Yanbin ;
Kundalwal, S. I. ;
Kumar, S. .
CARBON, 2016, 98 :313-333
[7]   Preparation and characterization of graphene oxide paper [J].
Dikin, Dmitriy A. ;
Stankovich, Sasha ;
Zimney, Eric J. ;
Piner, Richard D. ;
Dommett, Geoffrey H. B. ;
Evmenenko, Guennadi ;
Nguyen, SonBinh T. ;
Ruoff, Rodney S. .
NATURE, 2007, 448 (7152) :457-460
[8]   Biomimetic nanocoatings with exceptional mechanical, barrier, and flame-retardant properties from large-scale one-step coassembly [J].
Ding, Fuchuan ;
Liu, Jingjing ;
Zeng, Songshan ;
Xia, Yan ;
Wells, Kacie M. ;
Nieh, Mu-Ping ;
Sun, Luyi .
SCIENCE ADVANCES, 2017, 3 (07)
[9]   Development of a pyrolysis model for glass fiber reinforced polyamide 66 blended with red phosphorus: Relationship between flammability behavior and material composition [J].
Ding, Yan ;
Swann, Joshua D. ;
Sun, Qi ;
Stoliarov, Stanislav I. ;
Kraemer, Roland H. .
COMPOSITES PART B-ENGINEERING, 2019, 176
[10]   A Large-Area, Flexible, and Flame-Retardant Graphene Paper [J].
Dong, Liye ;
Hu, Chuangang ;
Song, Long ;
Huang, Xianke ;
Chen, Nan ;
Qu, Liangti .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (09) :1470-1476