Reduced graphene oxide field-effect transistor for label-free femtomolar protein detection

被引:172
作者
Kim, Duck-Jin
Sohn, Il Yung
Jung, Jin-Heak [1 ,2 ]
Yoon, Ok Ja
Lee, N. -E. [1 ,2 ]
Park, Joon-Shik [3 ]
机构
[1] Sungkyunkwan Univ, Dept Adv Mat Sci & Engn, SKKU Adv Inst Nanotechnol SAINT, Suwon 440746, Gyeonggi Do, South Korea
[2] Sungkyunkwan Univ, SAIHST, Suwon 440746, Gyeonggi Do, South Korea
[3] KETI, Smart Convergence Sensor Res Ctr, Songnam 463816, Gyeonggi Do, South Korea
基金
新加坡国家研究基金会;
关键词
Reduced graphene oxide; Field-effect transistor; Biosensor; Immunosensing; Label-free detection; CHARGED-IMPURITY SCATTERING; PROSTATE-SPECIFIC ANTIGEN; CARBON-NANOTUBE; BIOMOLECULES; NANOSHEETS; TRANSPORT; DEVICES; SENSORS; LIQUID; ARRAYS;
D O I
10.1016/j.bios.2012.09.040
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
We report reduced graphene oxide field effect transistor (R-GO FET) biosensor for label-free ultrasensitive detection of a prostate cancer biomarker, prostate specific antigen/alpha 1-antichymotrypsin (PSA-ACT) complex. The R-GO channel in the device was formed by reduction of graphene oxide nanosheets networked by a self-assembly process. Immunoreaction of PSA-ACT complexes with PSA monoclonal antibodies on the R-GO channel surface caused a linear response in the shift of the gate voltage, V-g,V-min, where the minimum conductivity occurs. The R-GO FET can detect protein-protein interactions down to femtomolar level with a dynamic range over 6-orders of magnitude in the V-g,V-min shift as a sensitivity parameter. High association constants of 3.2 nM(-1) and 4.2 nM(-1) were obtained for the pH 6.2 and pH 7.4 analyte solutions, respectively. The R-GO FET biosensor showed a high specificity to other cancer biomarker in the phosphate buffered saline solutions as well as in the human serum. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:621 / 626
页数:6
相关论文
共 52 条
  • [1] A self-consistent theory for graphene transport
    Adam, Shaffique
    Hwang, E. H.
    Galitski, V. M.
    Das Sarma, S.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) : 18392 - 18397
  • [2] Honeycomb Carbon: A Review of Graphene
    Allen, Matthew J.
    Tung, Vincent C.
    Kaner, Richard B.
    [J]. CHEMICAL REVIEWS, 2010, 110 (01) : 132 - 145
  • [3] ARMBRUSTER DA, 1993, CLIN CHEM, V39, P181
  • [4] Graphene: Electronic and Photonic Properties and Devices
    Avouris, Phaedon
    [J]. NANO LETTERS, 2010, 10 (11) : 4285 - 4294
  • [5] Electrochemical Gate-Controlled Charge Transport in Graphene in Ionic Liquid and Aqueous Solution
    Chen, Fang
    Qing, Quan
    Xia, Jilin
    Li, Jinghong
    Tao, Nongjian
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (29) : 9908 - +
  • [6] Ionic Screening of Charged-Impurity Scattering in Graphene
    Chen, Fang
    Xia, Jilin
    Tao, Nongjian
    [J]. NANO LETTERS, 2009, 9 (04) : 1621 - 1625
  • [7] Charged-impurity scattering in graphene
    Chen, J. -H.
    Jang, C.
    Adam, S.
    Fuhrer, M. S.
    Williams, E. D.
    Ishigami, M.
    [J]. NATURE PHYSICS, 2008, 4 (05) : 377 - 381
  • [8] Suspended Graphene Sensors with Improved Signal and Reduced Noise
    Cheng, Zengguang
    Li, Qiang
    Li, Zhongjun
    Zhou, Qiaoyu
    Fang, Ying
    [J]. NANO LETTERS, 2010, 10 (05) : 1864 - 1868
  • [9] Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials
    Compton, Owen C.
    Nguyen, SonBinh T.
    [J]. SMALL, 2010, 6 (06) : 711 - 723
  • [10] Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor
    Das, A.
    Pisana, S.
    Chakraborty, B.
    Piscanec, S.
    Saha, S. K.
    Waghmare, U. V.
    Novoselov, K. S.
    Krishnamurthy, H. R.
    Geim, A. K.
    Ferrari, A. C.
    Sood, A. K.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (04) : 210 - 215