Vortex solitons in the (2+1)-dimensional nonlinear Schrodinger equation with variable diffraction and nonlinearity coefficients

被引:4
|
作者
Xu, Siliu [1 ]
Petrovic, Nikola Z. [2 ,3 ]
Belic, Milivoj R. [2 ]
机构
[1] HuBei Univ Sci & Technol, Sch Elect & Informat Engn, Xianning 437100, Peoples R China
[2] Texas A&M Univ Qatar, Sci Program, Doha, Qatar
[3] Univ Belgrade, Inst Phys, Belgrade 11001, Serbia
关键词
OPTICAL VORTICES; BEAM; TRANSMISSION; PROPAGATION; FIBERS;
D O I
10.1088/0031-8949/87/04/045401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using Hirota's bilinear method, we determine approximate analytical localized solutions of the (2 + 1)-dimensional nonlinear Schrodinger equation with variable diffraction and nonlinearity coefficients. Our results indicate that a new family of vortices can be formed in the Kerr nonlinear media in the cylindrical geometry. Variable diffraction and nonlinearity coefficients allow utilization of the soliton management method. We present solitary solutions for two types of distributed coefficients: trigonometric and exponential. It is demonstrated that the soliton profiles found are structurally stable, but slowly expanding with propagation.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Special soliton structures in the (2+1)-dimensional nonlinear Schrodinger equation with radially variable diffraction and nonlinearity coefficients
    Zhong, Wei-Ping
    Belic, Milivoj R.
    Xia, Yuzhou
    PHYSICAL REVIEW E, 2011, 83 (03):
  • [2] Solitons, rogue waves and breather solutions for the (2+1)-dimensional nonlinear Schrodinger equation with variable coefficients
    Hamed, A. A.
    Kader, A. H. Abdel
    Latif, M. S. Abdel
    OPTIK, 2020, 216
  • [3] On the breathers and rogue waves to a (2+1)-dimensional nonlinear Schrodinger equation with variable coefficients
    Wang, Xiu-Bin
    Han, Bo
    WAVES IN RANDOM AND COMPLEX MEDIA, 2021, 31 (06) : 1072 - 1082
  • [4] EXTENDED SYMMETRIES AND SOLUTIONS OF (2+1)-DIMENSIONAL NONLINEAR SCHRODINGER EQUATION WITH VARIABLE COEFFICIENTS
    Wang, Jia
    Li, Biao
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2009, 20 (11): : 1681 - 1696
  • [5] Rational solutions and spatial solitons for the (2+1)-dimensional nonlinear Schrodinger equation with distributed coefficients
    Ma Zheng-Yi
    Ma Song-Hua
    Yang Yi
    ACTA PHYSICA SINICA, 2012, 61 (19)
  • [6] Localized solitons of a (2+1)-dimensional nonlocal nonlinear Schrodinger equation
    Maruno, Ken-ichi
    Ohta, Yasuhiro
    PHYSICS LETTERS A, 2008, 372 (24) : 4446 - 4450
  • [7] Dynamics of the optical solitons for a (2+1)-dimensional nonlinear Schrodinger equation
    Zuo, Da-Wei
    Jia, Hui-Xian
    Shan, Dong-Ming
    SUPERLATTICES AND MICROSTRUCTURES, 2017, 101 : 522 - 528
  • [8] Dark solitons and Backlund transformation for the (2+1)-dimensional coupled nonlinear Schrodinger equation with the variable coefficients in a graded-index waveguide
    Wu, Xiao-Yu
    Tian, Bo
    Xie, Xi-Yang
    Chai, Jun
    SUPERLATTICES AND MICROSTRUCTURES, 2017, 101 : 117 - 126
  • [9] Nonlinear tunneling effect in the (2+1)-dimensional cubic-quintic nonlinear Schrodinger equation with variable coefficients
    Dai, C. Q.
    Yang, Q.
    He, J. D.
    Wang, Y. Y.
    EUROPEAN PHYSICAL JOURNAL D, 2011, 63 (01): : 141 - 148
  • [10] The (2+1)-dimensional hyperbolic nonlinear Schrodinger equation and its optical solitons
    Baleanu, Umitru
    Hosseini, Kamyar
    Salahshour, Soheil
    Sadri, Khadijeh
    Mirzazadeh, Mohammad
    Park, Choonkil
    Ahmadian, Ali
    AIMS MATHEMATICS, 2021, 6 (09): : 9568 - 9581