Ultra-Narrow Laser for Optical Frequency Reference

被引:17
作者
Lisak, D. [1 ]
Cygan, A. [1 ]
Bielska, K. [1 ]
Piwinski, M. [1 ]
Ozimek, F. [2 ]
Ido, T. [3 ]
Trawinski, R. S. [1 ]
Ciurylo, R. [1 ]
机构
[1] Uniwersytet Mikolaja Kopernika, Inst Fizyki, PL-87100 Torun, Poland
[2] Uniwersytet Warszawski, Wydzial Fizyki, Inst Fizyki Doswiadczalnej, PL-00681 Warsaw, Poland
[3] Natl Inst Informat & Commun Technol, Koganei, Tokyo 1848795, Japan
关键词
DIODE-LASER; STABILIZATION; LINEWIDTH; COMPACT; CLOCKS; CAVITY; PHASE;
D O I
10.12693/APhysPolA.121.614
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present ultra-narrow line width, tunable diode laser system which will be used as a local oscillator in an optical atomic clock and for precision spectroscopy of Sr near 689 um. Design of the high finesse optical cavity used as short-term frequency reference is optimized with respect to insensitivity to vibrations. We achieved laser line width of about 8 Hz, measured by comparison of two identical systems. The relative phase lock of two lasers is better than 150 mHz. Laser tunability and usefulness for precison spectroscopy were demonstrated through line shape measurement of a 20 kHz wide resonance of the optical cavity.
引用
收藏
页码:614 / 621
页数:8
相关论文
共 50 条
[41]   Spectrum collapse, narrow lines, and soliton combs with multi-frequency laser diodes locked to optical microresonators [J].
Bilenko, I. A. ;
Kondratiev, N. M. ;
Lobanov, V. E. ;
Galiev, R. R. ;
Pavlov, N. G. ;
Voloshin, A. S. ;
Gorodnitskiy, A. S. ;
Koptyaev, S. ;
Gorodetsky, M. L. .
LASER RESONATORS, MICRORESONATORS, AND BEAM CONTROL XXI, 2019, 10904
[42]   Microrod Optical Frequency Reference in the Ambient Environment [J].
Zhang, Wei ;
Baynes, Fred ;
Diddams, Scott A. ;
Papp, Scott B. .
PHYSICAL REVIEW APPLIED, 2019, 12 (02)
[43]   Phase-locking of octave-spanning optical frequency comb based on Kerr-lens mode-locked Yb:KYW laser to reference laser [J].
Mitaki, Masatoshi ;
Sugiyama, Kazuhiko .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2021, 60 (02)
[44]   Narrow linewidth diode laser modules for quantum optical sensor applications in the field and in space [J].
Wicht, A. ;
Bawamia, A. ;
Krueger, M. ;
Kuerbis, Ch. ;
Schiemangk, M. ;
Smol, R. ;
Peters, A. ;
Traenkle, G. .
COMPONENTS AND PACKAGING FOR LASER SYSTEMS III, 2017, 10085
[45]   A flight-like absolute optical frequency reference based on iodine for laser systems at 1064 nm [J].
Doeringshoff, K. ;
Schuldt, T. ;
Kovalchuk, E. V. ;
Stuehler, J. ;
Braxmaier, C. ;
Peters, A. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2017, 123 (06)
[46]   An agile laser with ultra-low frequency noise and high sweep linearity [J].
Jiang, Haifeng ;
Kefelian, Fabien ;
Lemonde, Pierre ;
Clairon, Andre ;
Santarelli, Giorgio .
OPTICS EXPRESS, 2010, 18 (04) :3284-3297
[47]   Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb [J].
Inaba, Hajime ;
Hosaka, Kazumoto ;
Yasuda, Masami ;
Nakajima, Yoshiaki ;
Iwakuni, Kana ;
Akamatsu, Daisuke ;
Okubo, Sho ;
Kohno, Takuya ;
Onae, Atsushi ;
Hong, Feng-Lei .
OPTICS EXPRESS, 2013, 21 (07) :7891-7896
[48]   Remote transfer of ultra-stable optical frequency reference using active cancellation of fiber induced phase noise [J].
Das, Manoj .
2022 URSI REGIONAL CONFERENCE ON RADIO SCIENCE, USRI-RCRS, 2022, :12-15
[49]   Laser stabilization with a frequency-to-voltage chip for narrow-line laser cooling [J].
McFerran, J. J. .
OPTICS LETTERS, 2018, 43 (07) :1475-1478
[50]   Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors [J].
Legero, Thomas ;
Kessler, Thomas ;
Sterr, Uwe .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2010, 27 (05) :914-919