Projectile density, impact angle and energy effects on hypervelocity impact damage to carbon fibre/peek composites

被引:24
作者
Lamontagne, CG
Manuelpillai, GN
Kerr, JH
Taylor, EA
Tennyson, RC
Burchell, MJ
机构
[1] Univ Toronto, Inst Aerosp Studies, Downsview, ON M3H 5T6, Canada
[2] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA
[3] Univ Kent, Unit Space Sci & Astrophys, Canterbury CT2 7NR, Kent, England
关键词
hypervelocity impact; composites; density; oblique angle; energy; debris clouds; cone angle; damage;
D O I
10.1016/S0734-743X(01)00110-5
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper explores the effects of projectile density, impact angle and energy on the damage produced by hypervelocity impacts on carbon fibre/PEEK composites. Tests were performed using the light gas gun facilities at the University of Kent at Canterbury, UK, and the NASA Johnson Space Center two-stage light gas gun facilities at Rice University in Houston, Texas. Various density spherical projectiles impacted AS4/PEEK composite laminates at velocities ranging from 2.71 to 7.14 km/s. In addition, a series of tests with constant size aluminum projectiles (1.5 mm in diameter) impacting composite targets at velocities of 3,4, 5 and 6 km/s was undertaken at incident angles of 0, 30 and 45 degrees. Similar tests were also performed with 2 mm aluminum projectiles impacting at a velocity of approximately 6 km/s. The damage to the composite was shown to be independent of projectile density; however, debris cloud damage patterns varied with particle density. It was also found that the entry crater diameters were more dependent upon the impact velocity and the projectile diameter than the impact angle. The extent of the primary damage on the witness plates for the normal incidence impacts was shown to increase with impact velocity, hence energy. A series of tests exploring the shielding effect on the witness plate showed that a stand-off layer of Nextel fabric was very effective at breaking up the impacting debris cloud, with the level of protection increasing with a non-zero stand-off distance, (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:381 / 398
页数:18
相关论文
共 17 条
[1]   Hypervelocity impact studies using the 2 MV Van de Graaff accelerator and two-stage light gas gun of the University of Kent at Canterbury [J].
Burchell, MJ ;
Cole, MJ ;
McDonnell, JAM ;
Zarnecki, JC .
MEASUREMENT SCIENCE AND TECHNOLOGY, 1999, 10 (01) :41-50
[2]   INVESTIGATION OF HYPERVELOCITY IMPACT DAMAGE TO SPACE STATION TRUSS TUBES [J].
CHRISTIANSEN, EL .
INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 1990, 10 (1-4) :125-133
[3]  
Cour-Palais BG, 1987, Int J Impact Eng, V5, P221
[4]   A MULTISHOCK CONCEPT FOR SPACECRAFT SHIELDING [J].
COURPALAIS, BG ;
CREWS, JL .
INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 1990, 10 (1-4) :135-146
[5]  
DEGROH KK, 1991, NASA CP, V3134
[6]  
KESSLER DJ, 1988, TM100471 NASA
[7]   Normal and oblique hypervelocity impacts on carbon fibre/peek composites [J].
Lamontage, CG ;
Manuelpillai, GN ;
Taylor, EA ;
Tennyson, RC .
INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 1999, 23 (01) :519-532
[8]   HYPERVELOCITY IMPACT RESPONSE OF SPACED COMPOSITE-MATERIAL STRUCTURES [J].
SCHONBERG, WP .
INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 1990, 10 (1-4) :509-523
[9]  
SHORTLIFFE GD, 1997, J CANADIAN AERONAUTI, V43, P195
[10]  
TENNYSON RC, 1994, PROCEEDINGS OF THE 8TH CASI CONFERENCE ON ASTRONAUTICS, P441