LDx: Estimation of Linkage Disequilibrium from High-Throughput Pooled Resequencing Data

被引:62
作者
Feder, Alison F. [1 ,2 ]
Petrov, Dmitri A. [1 ]
Bergland, Alan O. [1 ]
机构
[1] Stanford Univ, Dept Biol, Stanford, CA 94305 USA
[2] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
DROSOPHILA-MELANOGASTER; STATISTICAL-METHOD; NEXT-GENERATION; DNA SAMPLES; POPULATION; INFERENCE; POLYMORPHISM; SELECTION; SNPS;
D O I
10.1371/journal.pone.0048588
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
High-throughput pooled resequencing offers significant potential for whole genome population sequencing. However, its main drawback is the loss of haplotype information. In order to regain some of this information, we present LDx, a computational tool for estimating linkage disequilibrium (LD) from pooled resequencing data. LDx uses an approximate maximum likelihood approach to estimate LD (r(2)) between pairs of SNPs that can be observed within and among single reads. LDx also reports r(2) estimates derived solely from observed genotype counts. We demonstrate that the LDx estimates are highly correlated with r(2) estimated from individually resequenced strains. We discuss the performance of LDx using more stringent quality conditions and infer via simulation the degree to which performance can improve based on read depth. Finally we demonstrate two possible uses of LDx with real and simulated pooled resequencing data. First, we use LDx to infer genomewide patterns of decay of LD with physical distance in D. melanogaster population resequencing data. Second, we demonstrate that r(2) estimates from LDx are capable of distinguishing alternative demographic models representing plausible demographic histories of D. melanogaster. Citation: Feder AF, Petrov DA, Bergland AO (2012) LDx: Estimation of Linkage Disequilibrium from High-Throughput Pooled Resequencing Data. PLoS ONE 7(11): e48588. doi:10.1371/journal.pone.0048588
引用
收藏
页数:7
相关论文
共 30 条
[1]   Genome-Wide Footprints of Pig Domestication and Selection Revealed through Massive Parallel Sequencing of Pooled DNA [J].
Amaral, Andreia J. ;
Ferretti, Luca ;
Megens, Hendrik-Jan ;
Crooijmans, Richard P. M. A. ;
Nie, Haisheng ;
Ramos-Onsins, Sebastian E. ;
Perez-Enciso, Miguel ;
Schook, Lawrence B. ;
Groenen, Martien A. M. .
PLOS ONE, 2011, 6 (04)
[2]   A statistical method for the detection of variants from next-generation resequencing of DNA pools [J].
Bansal, Vikas .
BIOINFORMATICS, 2010, 26 (12) :i318-i324
[3]   Accurate detection and genotyping of SNPs utilizing population sequencing data [J].
Bansal, Vikas ;
Harismendy, Olivier ;
Tewhey, Ryan ;
Murray, Sarah S. ;
Schork, Nicholas J. ;
Topol, Eric J. ;
Frazer, Kelly A. .
GENOME RESEARCH, 2010, 20 (04) :537-545
[4]  
Beerli P, 1999, GENETICS, V152, P763
[5]  
CLARK AG, 1990, MOL BIOL EVOL, V7, P111
[6]   To Pool, or Not to Pool? [J].
Cutler, David J. ;
Jensen, Jeffrey D. .
GENETICS, 2010, 186 (01) :41-43
[7]   Drosophila melanogaster recombination rate calculator [J].
Fiston-Lavier, Anna-Sophie ;
Singh, Nadia D. ;
Lipatov, Mikhail ;
Petrov, Dmitri A. .
GENE, 2010, 463 (1-2) :18-20
[8]   The Next Generation of Molecular Markers From Massively Parallel Sequencing of Pooled DNA Samples [J].
Futschik, Andreas ;
Schloetterer, Christian .
GENETICS, 2010, 186 (01) :207-218
[9]  
Gillespie, 2004, POPULATION GENETICS
[10]   Optimal pooling for genome re-sequencing with ultra-high-throughput short-read technologies [J].
Hajirasouliha, Iman ;
Hormozdiari, Fereydoun ;
Sahinalp, S. Cenk ;
Birol, Inanc .
BIOINFORMATICS, 2008, 24 (13) :I32-I40