The chromatic number of finite type-graphs

被引:2
作者
Avart, Christian [1 ]
Kay, Bill [2 ]
Reiher, Christian [3 ]
Roedl, Vojtech [2 ]
机构
[1] OtoSense, 3239 El Camino Real, Palo Alto, CA 94306 USA
[2] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
[3] Univ Hamburg, Fachbereich Math, Bundesstr 55, D-20146 Hamburg, Germany
基金
美国国家科学基金会;
关键词
Shift graphs; Type-graphs; Chromatic number; Order types of pairs; SHIFT GRAPHS; SUBGRAPHS;
D O I
10.1016/j.jctb.2016.10.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By a finite type-graph we mean a graph whose set of vertices is the set of all k-subsets of [n] = {1, 2,... n} for some integers n >= k >= 1, and in which two such sets are adjacent if and only if they realise a certain order type specified in advance. Examples of such graphs have been investigated in a great variety of contexts in the literature with particular attention being paid to their chromatic number. In recent joint work with Tomasz Luczak, two of the authors embarked on a systematic study of the chromatic numbers of such type-graphs, formulated a general conjecture determining this number up to a multiplicative factor, and proved various results of this kind. In this article we fully prove this conjecture. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:877 / 896
页数:20
相关论文
共 9 条
[1]   On generalized shift graphs [J].
Avart, Christian ;
Luczak, Tomasz ;
Roedl, Vojtech .
FUNDAMENTA MATHEMATICAE, 2014, 226 (02) :173-199
[2]   SHIFT GRAPHS AND LOWER BOUNDS ON RAMSEY NUMBERS R(K)(L-R) [J].
DUFFUS, D ;
LEFMANN, H ;
RODL, V .
DISCRETE MATHEMATICS, 1995, 137 (1-3) :177-187
[3]  
Erdos P., 1966, THEORY OF GRAPHS, P83
[4]   Finite subgraphs of uncountably chromatic graphs [J].
Komjákh, P ;
Shelah, S .
JOURNAL OF GRAPH THEORY, 2005, 49 (01) :28-38
[5]   Ordered Ramsey theory and track representations of graphs [J].
Milans, Kevin G. ;
Stolee, Derrick ;
West, Douglas B. .
JOURNAL OF COMBINATORICS, 2015, 6 (04) :445-456
[6]   RAMSEY PROPERTY FOR GRAPHS WITH FORBIDDEN COMPLETE SUBGRAPHS [J].
NESETRIL, J ;
RODL, V .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1976, 20 (03) :243-249
[7]   NOTE ON DECOMPOSITION OF SPHERES IN HILBERT-SPACES [J].
PREISS, D ;
RODL, V .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 43 (01) :38-44
[8]  
Specker Ernst., 1957, Comment. Math. Helv, V31, P302
[9]  
[No title captured]