Weakly supervised object localization and segmentation in videos

被引:11
|
作者
Rochan, Mrigank [1 ]
Rahman, Shafin [1 ]
Bruce, Neil D. B. [1 ]
Wang, Yang [1 ]
机构
[1] Univ Manitoba, Dept Comp Sci, Winnipeg, MB R3T 2N2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Weakly supervised; Object localization; TRACKING; EXTRACTION;
D O I
10.1016/j.imavis.2016.08.015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of localizing and segmenting objects in weakly labeled video. A video is weakly labeled if it is associated with a tag (e.g. YouTube videos with tags) describing the main object present in the video. It is weakly labeled because the tag only indicates the presence/absence of the object, but does not give the detailed spatial/temporal location of the object in the video. Given a weakly labeled video, our method can automatically localize the object in each frame and segment it from the background. Our method is fully automatic and does not require any user-input. In principle, it can be applied to a video of any object class. We evaluate our proposed method on a dataset with more than 100 video shots. Our experimental results show that our method outperforms other baseline approaches. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [1] Efficient Object Localization and Segmentation in Weakly Labeled Videos
    Rochan, Mrigank
    Wang, Yang
    ADVANCES IN VISUAL COMPUTING (ISVC 2014), PT 1, 2014, 8887 : 172 - 181
  • [2] Leveraging Transformers for Weakly Supervised Object Localization in Unconstrained Videos
    Murtaza, Shakeeb
    Pedersoli, Marco
    Sarraf, Aydin
    Granger, Eric
    ARTIFICIAL NEURAL NETWORKS IN PATTERN RECOGNITION, ANNPR 2024, 2024, 15154 : 195 - 207
  • [3] Boosting Weakly Supervised Object Localization and Segmentation With Domain Adaption
    Zhu, Lei
    She, Qi
    Chen, Qian
    Ren, Qiushi
    Lu, Yanye
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 8680 - 8695
  • [4] Background Activation Suppression for Weakly Supervised Object Localization and Semantic Segmentation
    Wei Zhai
    Pingyu Wu
    Kai Zhu
    Yang Cao
    Feng Wu
    Zheng-Jun Zha
    International Journal of Computer Vision, 2024, 132 (3) : 750 - 775
  • [5] Background Activation Suppression for Weakly Supervised Object Localization and Semantic Segmentation
    Zhai, Wei
    Wu, Pingyu
    Zhu, Kai
    Cao, Yang
    Wu, Feng
    Zha, Zheng-Jun
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (03) : 750 - 775
  • [6] Tracking-assisted Weakly Supervised Online Visual Object Segmentation in Unconstrained Videos
    Zhang, Zongpu
    Hua, Yang
    Song, Tao
    Xue, Zhengui
    Ma, Ruhui
    Robertson, Neil
    Guan, Haibing
    PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), 2018, : 941 - 949
  • [7] Weakly Supervised Video Object Segmentation
    Wang, Yufei
    Hu, Yongjiang
    Liew, Alan Wee-Chung
    Wang, Junhu
    PROCEEDINGS OF TENCON 2018 - 2018 IEEE REGION 10 CONFERENCE, 2018, : 0315 - 0320
  • [8] Rethinking the Localization in Weakly Supervised Object Localization
    Xu, Rui
    Luo, Yong
    Hu, Han
    Du, Bo
    Shen, Jialie
    Wen, Yonggang
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 5484 - 5494
  • [9] Generalized Weakly Supervised Object Localization
    Zhang, Dingwen
    Guo, Guangyu
    Zeng, Wenyuan
    Li, Lei
    Han, Junwei
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) : 5395 - 5406
  • [10] From Weakly Supervised Object Localization to Semantic Segmentation by Probabilistic Image Modeling
    Wilhelm, Thorsten
    Grzeszick, Rene
    Fink, Gernot A.
    Woehler, Christian
    2017 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING - TECHNIQUES AND APPLICATIONS (DICTA), 2017, : 119 - 125