WAVELET COLLOCATION METHOD AND MULTILEVEL AUGMENTATION METHOD FOR HAMMERSTEIN EQUATIONS

被引:9
作者
Kaneko, Hideaki [1 ]
Neamprem, Khomsan [2 ,3 ]
Novaprateep, Boriboon [3 ,4 ]
机构
[1] Old Dominion Univ, Dept Math & Stat, Norfolk, VA 23529 USA
[2] King Mongkuts Univ Technol N Bangkok, Fac Sci Appl, Dept Math, Bangkok 10800, Thailand
[3] CHE, Ctr Excellence Math, Bangkok 10400, Thailand
[4] Mahidol Univ, Fac Sci, Dept Math, Bangkok 10400, Thailand
关键词
wavelet collocation method; Hammerstein equations; fast multilevel augmentation method; INTEGRAL-EQUATIONS; GALERKIN METHODS; SUPERCONVERGENCE;
D O I
10.1137/100809246
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A wavelet collocation method for nonlinear Hammerstein equations is formulated. A sparsity in the Jacobian matrix is obtained which gives rise to a fast algorithm for nonlinear solvers such as the Newton's method and the quasi-Newton method. A fast multilevel augmentation method is developed on a transformed nonlinear equation which gives an additional saving in computational time.
引用
收藏
页码:A309 / A338
页数:30
相关论文
共 23 条