WAVELET COLLOCATION METHOD AND MULTILEVEL AUGMENTATION METHOD FOR HAMMERSTEIN EQUATIONS

被引:9
作者
Kaneko, Hideaki [1 ]
Neamprem, Khomsan [2 ,3 ]
Novaprateep, Boriboon [3 ,4 ]
机构
[1] Old Dominion Univ, Dept Math & Stat, Norfolk, VA 23529 USA
[2] King Mongkuts Univ Technol N Bangkok, Fac Sci Appl, Dept Math, Bangkok 10800, Thailand
[3] CHE, Ctr Excellence Math, Bangkok 10400, Thailand
[4] Mahidol Univ, Fac Sci, Dept Math, Bangkok 10400, Thailand
关键词
wavelet collocation method; Hammerstein equations; fast multilevel augmentation method; INTEGRAL-EQUATIONS; GALERKIN METHODS; SUPERCONVERGENCE;
D O I
10.1137/100809246
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A wavelet collocation method for nonlinear Hammerstein equations is formulated. A sparsity in the Jacobian matrix is obtained which gives rise to a fast algorithm for nonlinear solvers such as the Newton's method and the quasi-Newton method. A fast multilevel augmentation method is developed on a transformed nonlinear equation which gives an additional saving in computational time.
引用
收藏
页码:A309 / A338
页数:30
相关论文
共 23 条
  • [1] A CLASS OF BASES IN L2 FOR THE SPARSE REPRESENTATION OF INTEGRAL-OPERATORS
    ALPERT, BK
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (01) : 246 - 262
  • [2] PIECEWISE CONTINUOUS COLLOCATION FOR INTEGRAL-EQUATIONS
    ATKINSON, K
    GRAHAM, I
    SLOAN, I
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (01) : 172 - 186
  • [3] ATKINSON K.E., 1992, J. Integral Equ. Appl., V4, P15
  • [4] Atkinson KE., 1996, Cambridge Monographs on Applied and Computational Mathematics
  • [5] Chen Z., 2005, Num. Math. Jl. Chinese Univ, V14, P31
  • [6] Chen Z., 2007, COMMUN PUR APPL ANAL, V6, P643
  • [7] FAST MULTILEVEL AUGMENTATION METHODS FOR SOLVING HAMMERSTEIN EQUATIONS
    Chen, Zhongying
    Wu, Bin
    Xu, Yuesheng
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) : 2321 - 2346
  • [8] Fast collocation methods for second kind integral equations
    Chen, ZY
    Micchelli, CA
    Xu, YS
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (01) : 344 - 375
  • [9] A multilevel method for solving operator equations
    Chen, ZY
    Micchelli, CA
    Xu, YS
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 262 (02) : 688 - 699
  • [10] A construction of interpolating wavelets on invariant sets
    Chen, ZY
    Micchelli, CA
    Xu, YS
    [J]. MATHEMATICS OF COMPUTATION, 1999, 68 (228) : 1569 - 1587