Development of sol-gel-derived multi-wall carbon nanotube/hydroxyapatite nanocomposite powders for bone substitution

被引:23
作者
Hooshmand, Tabassom [1 ,2 ]
Abrishamchian, Alireza [1 ,2 ]
Najafi, Farhood [3 ]
Mohammadi, Mohammadreza [4 ]
Najafi, Hossein [5 ]
Tahriri, Mohammadreza [6 ]
机构
[1] Univ Tehran Med Sci, Sch Dent, Dent Biomat Grp, Tehran, Iran
[2] Univ Tehran Med Sci, Res Ctr Sci & Technol Med RCSTIM, Tehran, Iran
[3] Inst Color Sci & Technol, Dept Resin & Addit, Tehran, Iran
[4] Sharif Univ Technol, Dept Mat Sci & Engn, Tehran, Iran
[5] Swiss Fed Inst Technol Lausanne EPFL, Fac Basic Sci, Inst Complex Matter Phys IPMC, CH-1015 Lausanne, Switzerland
[6] Amirkabir Univ Technol, Fac Biomed Engn, Biomat Grp, Tehran, Iran
关键词
Hydroxyapatite; carbon nanotubes; sol-gel synthesis; nanocomposite powders; morphology; HYDROXYAPATITE; NANOTUBES; COMPOSITES; MWNTS;
D O I
10.1177/0021998313475368
中图分类号
TB33 [复合材料];
学科分类号
摘要
Carbon nanotubes with unique physical and mechanical properties have shown great potential for biological applications, including tissue engineering and mimicking the structure and properties of human bones. In the present work, sol-gel synthesized nanocomposite powder of multi-wall carbon nanotube/hydroxyapatite characterized using field-emission scanning electron microscopy, transmission electron microscope, X-ray diffraction, Fourier transform infra-red spectroscopy and thermal analyses. The results show homogenous dispersion of nanotube in well-crystallized hydroxyapatite ceramic matrix. Scanning electron microscopy and transmission electron microscope observations show the sodium dodecyl sulfate-adsorbed multi-wall nanotube almost wrapped completely by crystals of hydroxyapatite that will help better integration of bone substitute materials with the surrounding bone tissue. Eventually, invitro study confirms the biocompatibility of composite powder comparable to monolithic hydroxyapatite.
引用
收藏
页码:483 / 490
页数:8
相关论文
共 23 条
[1]  
[Anonymous], CARBON NANOTUBE REIN
[2]   Synthesis and characterization of hydroxyapatite using carbon nanotubes as a nano-matrix [J].
Aryal, S ;
Bahadur, KCR ;
Dharmaraj, N ;
Kim, KW ;
Kim, HY .
SCRIPTA MATERIALIA, 2006, 54 (02) :131-135
[3]   Tribological behavior of plasma-sprayed carbon nanotube-reinforced hydroxyapatite coating in physiological solution [J].
Balani, Kantesh ;
Chen, Yao ;
Harlinkar, Sandip P. ;
Dahotre, Narendra B. ;
Agarwal, Arvind .
ACTA BIOMATERIALIA, 2007, 3 (06) :944-951
[4]   Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro [J].
Balani, Kantesh ;
Anderson, Rebecca ;
Laha, Tapas ;
Andara, Melanie ;
Tercero, Jorge ;
Crumpler, Eric ;
Agarwal, Arvind .
BIOMATERIALS, 2007, 28 (04) :618-624
[5]   Is the lotus leaf superhydrophobic? [J].
Cheng, YT ;
Rodak, DE .
APPLIED PHYSICS LETTERS, 2005, 86 (14) :1-3
[6]   Sol-gel production of bioactive nanocoatings for medical applications. Part II: current research and development [J].
Choi, Andy H. ;
Ben-Nissan, Besim .
NANOMEDICINE, 2007, 2 (01) :51-61
[7]  
Elliott JC, 1994, STUDIES INORGANIC CH, V18, P48
[8]   Carbon nanotube applications for tissue engineering [J].
Harrison, Benjamin S. ;
Atala, Anthony .
BIOMATERIALS, 2007, 28 (02) :344-353
[9]  
Hench LL, 1993, INTRO BIOCERAMICS, P386, DOI 10.1142/9789814317351_0001
[10]   Processing properties of nano apatite-polyamide biocomposites [J].
Jie, W ;
Yubao, L ;
Yi, H .
JOURNAL OF MATERIALS SCIENCE, 2005, 40 (03) :793-796