Thermal tensor renormalization group simulations of square-lattice quantum spin models

被引:32
作者
Li, Han [1 ]
Chen, Bin-Bin [1 ,2 ,3 ]
Chen, Ziyu [1 ]
von Delft, Jan [2 ,3 ]
Weichselbaum, Andreas [2 ,3 ,4 ]
Li, Wei [1 ,5 ]
机构
[1] Beihang Univ, Minist Educ, Dept Phys, Key Lab Micronano Measurement Manipulat & Phys, Beijing 100191, Peoples R China
[2] Ludwig Maximilians Univ Munchen, Fak Phys, MCQST, Arnold Sommerfeld Ctr Theoret Phys ASC, D-80333 Munich, Germany
[3] Ludwig Maximilians Univ Munchen, Fak Phys, Ctr NanoSci CeNS, D-80333 Munich, Germany
[4] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA
[5] Beihang Univ, Int Res Inst Multidisciplinary Sci, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
LOW-TEMPERATURE BEHAVIOR; HEISENBERG-ANTIFERROMAGNET; MONTE-CARLO; WAVE-FUNCTIONS; MAGNETISM; STATE; THERMODYNAMICS; SYSTEMS; SPACE;
D O I
10.1103/PhysRevB.100.045110
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, we benchmark the well-controlled and numerically accurate exponential thermal tensor renormalization group (XTRG) in the simulation of interacting spin models in two dimensions. Finite temperature introduces a finite thermal correlation length xi, such that for system sizes L >> xi finite-size calculations actually simulate the thermodynamic limit. In this paper, we focus on the square lattice Heisenberg antiferromagnet (SLH) and quantum Ising models (QIM) on open and cylindrical geometries up to width W = 10. We explore various one-dimensional mapping paths in the matrix product operator (MPO) representation, whose performance is clearly shown to be geometry dependent. We benchmark against quantum Monte Carlo (QMC) data, yet also the series-expansion thermal tensor network results. Thermal properties including the internal energy, specific heat, and spin structure factors, etc. are computed with high precision, obtaining excellent agreement with QMC results. XTRG also allows us to reach remarkably low temperatures. For SLH, we obtain an energy per site u*(g) similar or equal to -0.6694(4) and a spontaneous magnetization m*(S) similar or equal to 0.30(1) already consistent with the ground-state properties, which is obtained from extrapolated low-T thermal data on W <= 8 cylinders and W <= 10 open strips, respectively. We extract an exponential divergence versus T of the structure factor S(M), as well as the correlation length xi, at the ordering wave vector M = (pi, pi), which represents the renormalized classical behavior and can be observed over a narrow but appreciable temperature window, by analyzing the finite-size data by XTRG simulations. For the QIM with a finite-temperature phase transition, we employ several thermal quantities, including the specific heat, Binder ratio, as well as the MPO entanglement to determine the critical temperature T-c.
引用
收藏
页数:17
相关论文
共 75 条
[1]   AN APPROXIMATE QUANTUM THEORY OF THE ANTIFERROMAGNETIC GROUND STATE [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1952, 86 (05) :694-701
[2]  
[Anonymous], ARXIVCONDMAT0407066
[3]  
[Anonymous], ARXIV170809349
[4]   A cold-atom Fermi-Hubbard antiferromagnet [J].
Azurenko, Anton M. ;
Chiu, Christie S. ;
Ji, Geoffrey ;
Parsons, Maxwell F. ;
Kanasz-Nagy, Marton ;
Schmidt, Richard ;
Grusdt, Fabian ;
Demler, Eugene ;
Greif, Daniel ;
Greiner, Markus .
NATURE, 2017, 545 (7655) :462-+
[5]   Spectral functions in one-dimensional quantum systems at finite temperature using the density matrix renormalization group [J].
Barthel, Thomas ;
Schollwoeck, Ulrich ;
White, Steven R. .
PHYSICAL REVIEW B, 2009, 79 (24)
[6]   The ALPS project release 2.0: open source software for strongly correlated systems [J].
Bauer, B. ;
Carr, L. D. ;
Evertz, H. G. ;
Feiguin, A. ;
Freire, J. ;
Fuchs, S. ;
Gamper, L. ;
Gukelberger, J. ;
Gull, E. ;
Guertler, S. ;
Hehn, A. ;
Igarashi, R. ;
Isakov, S. V. ;
Koop, D. ;
Ma, P. N. ;
Mates, P. ;
Matsuo, H. ;
Parcollet, O. ;
Pawlowski, G. ;
Picon, J. D. ;
Pollet, L. ;
Santos, E. ;
Scarola, V. W. ;
Schollwoeck, U. ;
Silva, C. ;
Surer, B. ;
Todo, S. ;
Trebst, S. ;
Troyer, M. ;
Wall, M. L. ;
Werner, P. ;
Wessel, S. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
[7]   Square-lattice Heisenberg antiferromagnet at very large correlation lengths [J].
Beard, BB ;
Birgeneau, RJ ;
Greven, M ;
Wiese, UJ .
PHYSICAL REVIEW LETTERS, 1998, 80 (08) :1742-1745
[8]   CRITICAL PROPERTIES FROM MONTE-CARLO COARSE GRAINING AND RENORMALIZATION [J].
BINDER, K .
PHYSICAL REVIEW LETTERS, 1981, 47 (09) :693-696
[9]   FINITE SIZE SCALING ANALYSIS OF ISING-MODEL BLOCK DISTRIBUTION-FUNCTIONS [J].
BINDER, K .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1981, 43 (02) :119-140
[10]   Cluster Monte Carlo simulation of the transverse Ising model -: art. no. 066110 [J].
Blöte, HWJ ;
Deng, YJ .
PHYSICAL REVIEW E, 2002, 66 (06) :8