Role of Nanomaterials in the Fabrication of bioNEMS/MEMS for Biomedical Applications and towards Pioneering Food Waste Utilisation

被引:22
作者
Dahlan, Nuraina Anisa [1 ,2 ]
Thiha, Aung [1 ,2 ]
Ibrahim, Fatimah [1 ,2 ,3 ]
Milic, Lazar [4 ]
Muniandy, Shalini [2 ]
Jamaluddin, Nurul Fauzani [1 ,2 ]
Petrovic, Bojan [5 ]
Kojic, Sanja [4 ]
Stojanovic, Goran M. [4 ]
机构
[1] Univ Malaya, Fac Engn, Dept Biomed Engn, Kuala Lumpur 50603, Malaysia
[2] Univ Malaya, Fac Engn, Ctr Innovat Med Engn CIME, Dept Biomed Engn, Kuala Lumpur 50603, Malaysia
[3] Univ Malaya, Ctr Printable Elect, Kuala Lumpur 50603, Malaysia
[4] Univ Novi Sad, Fac Tech Sci, Novi Sad 21000, Serbia
[5] Univ Novi Sad, Fac Med, Novi Sad 21000, Serbia
基金
欧盟地平线“2020”;
关键词
nanomaterials; biomedical nanoelectromechanical systems (bioNEMS); biomedical microelectromechanical systems (bioMEMS); drug delivery system; point-of-care; TITANIUM-DIOXIDE NANOPARTICLES; NANOIMPRINT LITHOGRAPHY; CARBON NANOTUBES; IN-VIVO; MEMS; NANOANTENNA; SILICON; TECHNOLOGIES; SENSITIVITY; RESONATORS;
D O I
10.3390/nano12224025
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
bioNEMS/MEMS has emerged as an innovative technology for the miniaturisation of biomedical devices with high precision and rapid processing since its first R&D breakthrough in the 1980s. To date, several organic including food waste derived nanomaterials and inorganic nanomaterials (e.g., carbon nanotubes, graphene, silica, gold, and magnetic nanoparticles) have steered the development of high-throughput and sensitive bioNEMS/MEMS-based biosensors, actuator systems, drug delivery systems and implantable/wearable sensors with desirable biomedical properties. Turning food waste into valuable nanomaterials is potential groundbreaking research in this growing field of bioMEMS/NEMS. This review aspires to communicate recent progress in organic and inorganic nanomaterials based bioNEMS/MEMS for biomedical applications, comprehensively discussing nanomaterials criteria and their prospects as ideal tools for biomedical devices. We discuss clinical applications for diagnostic, monitoring, and therapeutic applications as well as the technological potential for cell manipulation (i.e., sorting, separation, and patterning technology). In addition, current in vitro and in vivo assessments of promising nanomaterials-based biomedical devices will be discussed in this review. Finally, this review also looked at the most recent state-of-the-art knowledge on Internet of Things (IoT) applications such as nanosensors, nanoantennas, nanoprocessors, and nanobattery.
引用
收藏
页数:40
相关论文
共 227 条
[1]   NLRP3 inflammasome, oxidative stress, and apoptosis induced in the intestine and liver of rats treated with titanium dioxide nanoparticles: in vivo and in vitro study [J].
Abbasi-Oshaghi, Ebrahim ;
Mirzaei, Fatemeh ;
Pourjafar, Mona .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2019, 14 :1919-1936
[2]   Recent advances in waste-recycled nanomaterials for biomedical applications: Waste-to-wealth [J].
Abd Elkodous, Mohamed ;
El-Husseiny, Hussein M. ;
El-Sayyad, Gharieb S. ;
Hashem, Amr Hosny ;
Doghish, Ahmed S. ;
Elfadil, Dounia ;
Radwan, Yasmine ;
El-Zeiny, Hayam M. ;
Bedair, Heba ;
Ikhdair, Osama A. ;
Hashim, Hisham ;
Salama, Ahmed M. ;
Alshater, Heba ;
Ali Ahmed, Ahmed ;
Elsayed, Mahmoud Gamal ;
Nagy, Maria ;
Ali, Nouran Y. ;
Elahmady, Maryam ;
Kamel, Ahmed M. ;
Abd Elkodous, Mahmoud ;
Maallem, Imene ;
Kaml, Maria B. Sh. ;
Nasser, Nayera ;
Nouh, Ahmed AlaaEldin ;
Safwat, Fatma M. ;
Alshal, Mai M. ;
Ahmed, Salma K. ;
Nagib, Taha ;
-sayed, Fatma M. El ;
Almahdi, Manal ;
Adla, Yahia ;
ElNashar, Noha T. ;
Hussien, Aya Misbah ;
Salih, Alaa S. ;
Mahmoud, Somaya Abdulbaset ;
Magdy, Shireen ;
Ahmed, Diana I. ;
Hassan, Fayrouz Mohamed Saeed ;
Edward, Nermin A. ;
Milad, Kirolos Said ;
Halasa, Shereen R. ;
Arafa, Mohamed M. ;
Hegazy, Abdullah ;
Kawamura, Go ;
Tan, Wai Kian ;
Matsuda, Atsunori .
NANOTECHNOLOGY REVIEWS, 2021, 10 (01) :1662-1739
[3]   Waste-Derived Nanoparticles: Synthesis Approaches, Environmental Applications, and Sustainability Considerations [J].
Abdelbasir, Sabah M. ;
McCourt, Kelli M. ;
Lee, Cindy M. ;
Vanegas, Diana C. .
FRONTIERS IN CHEMISTRY, 2020, 8
[4]   Advances in and prospects of nanomaterials' morphological control for lithium rechargeable batteries [J].
AbdelHamid, Ayman A. ;
Mendoza-Garcia, Adriana ;
Ying, Jackie Y. .
NANO ENERGY, 2022, 93
[5]   Surface micromachining multilayer porous silicon for spectral filtering applications [J].
Afandi, Yaman ;
Parish, Giacinta ;
Keating, Adrian .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2022, 138
[6]   Development of Ultrasensitive Biomimetic Auditory Hair Cells Based on Piezoresistive Hydrogel Nanocomposites [J].
Ahmadi, Hadi ;
Moradi, Hamed ;
Pastras, Christopher J. ;
Moshizi, Sajad Abolpour ;
Wu, Shuying ;
Asadnia, Mohsen .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (37) :44904-44915
[7]   In-Plane High-Sensitivity Capacitive Accelerometer in a 3-D CMOS-Compatible Surface Micromachining Process [J].
Alfaifi, Ahmad ;
Alhomoudi, Ibrahim A. ;
Nabki, Frederic ;
El-Gamal, Mourad N. .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2019, 28 (01) :14-24
[8]   Emerging IoT domains, current standings and open research challenges: a review [J].
Ali, Omer ;
Ishak, Mohamad Khairi ;
Bhatti, Muhammad Kamran Liaquat .
PEERJ COMPUTER SCIENCE, 2021, 7 :1-49
[9]   Development of a Wireless Telemetry Sensor Device to Measure Load and Deformation in Orthopaedic Applications [J].
Anderson, William D. ;
Wilson, Sydney L. M. ;
Holdsworth, David W. .
SENSORS, 2020, 20 (23) :1-19
[10]   Gold nanoparticles (GNPs) in biomedical and clinical applications: A review [J].
Anik, Muzahidul I. ;
Mahmud, Niaz ;
Al Masud, Abdullah ;
Hasan, Maruf .
NANO SELECT, 2022, 3 (04) :792-828