THE GEOMETRY OF A MODULI SPACE OF BUNDLES

被引:0
|
作者
Teleman, Andrei [1 ]
机构
[1] Aix Marseille Univ, CNRS, Cent Marseille, I2M,UMR 7373, F-13453 Marseille, France
来源
REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES | 2020年 / 65卷 / 03期
关键词
ALGEBRAIC DEFORMATIONS; DONALDSON THEORY; VECTOR-BUNDLES; RIEMANN-ROCH; SURFACES; INSTANTONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a class VII surface with b(2)(X) > 0. Following ideas developed in previous articles, we study the moduli space M-X := M-kappa X(pst )(E), where E is a differentiable rank 2 bundle on X with c(2)(E) = 0, and det(E) = K-X, the underlying differentiable line bundle of the canonical line bundle kappa(X). In this article we are interested in the non-minimal case: assuming that the minimal model of X is a primary Hopf surface, we prove that any point in the moduli space is a line bundle extension, and we give explicit geometric descriptions of M-X for b(2) (X) is an element of {1, 2}. Our motivation comes from the classification theory of class VII surfaces. Let X-0 be a minimal class VII surface with positive b(2) which is the deformation in large of a family of blown up primary Hopf surfaces. In other words X-0 is the central fiber of a holomorphic family (X-z)(z is an element of D), where X-z is a blown up primary Hopf surface for any z not equal 0. The classification of minimal class VII surfaces with this property is still an open problem. The moduli space M-X0 associated with an 'unknown such surface X-0 will be "the limit" of the family (M-Xz)(z is an element of D). of moduli spaces associated with blown up primary Hopf surfaces.
引用
收藏
页码:369 / 397
页数:29
相关论文
共 50 条
  • [31] Moduli of toric vector bundles
    Payne, Sam
    COMPOSITIO MATHEMATICA, 2008, 144 (05) : 1199 - 1213
  • [32] Moduli of autodual instanton bundles
    Jardim, Marcos
    Marchesi, Simone
    Wissdorf, Anna
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2016, 47 (03): : 823 - 843
  • [33] Moduli of generalized syzygy bundles
    Fantechi, Barbara
    Miro-Roig, Rosa M.
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2024, 20 (05) : 2113 - 2145
  • [34] THE LINE BUNDLES ON MODULI STACKS OF PRINCIPAL BUNDLES ON A CURVE
    Biswas, Indranil
    Hoffmann, Norbert
    DOCUMENTA MATHEMATICA, 2010, 15 : 35 - 72
  • [35] On the geometry of moduli spaces of anti-self-dual connections
    Ballico, E.
    Eyral, C.
    Gasparim, E.
    TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (03) : 633 - 645
  • [36] The geometry of the ball quotient model of the moduli space of genus four curves
    Casalaina-Martin, Sebastian
    Jensen, David
    Laza, Radu
    COMPACT MODULI SPACES AND VECTOR BUNDLES, 2012, 564 : 107 - +
  • [37] Moduli of mathematical instanton vector bundles with even c2 on projective space
    Tikhomirov, A. S.
    IZVESTIYA MATHEMATICS, 2013, 77 (06) : 1195 - 1223
  • [38] Moduli of mathematical instanton vector bundles with odd c2 on projective space
    Tikhomirov, A. S.
    IZVESTIYA MATHEMATICS, 2012, 76 (05) : 991 - 1073
  • [39] Birational geometry of the moduli space of quartic K3 surfaces
    Laza, Radu
    O'Grady, Kieran
    COMPOSITIO MATHEMATICA, 2019, 155 (09) : 1655 - 1710
  • [40] Monads and moduli components for stable rank 2 bundles with odd determinant on the projective space
    Fontes, Aislan Leal
    Jardim, Marcos
    GEOMETRIAE DEDICATA, 2023, 217 (02)