ON k-GENERALIZED FIBONACCI NUMBERS WITH ONLY ONE DISTINCT DIGIT

被引:0
作者
Marques, Diego [1 ]
机构
[1] Univ Brasilia, Dept Matemat, Brasilia, DF, Brazil
关键词
Tribonacci; Fibonacci; digits; linear forms in logarithms; reduction method; computation number theory; TRIBONACCI; FORMULA; SEQUENCES; PERIODS; MODULO;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (F-n)(n >= 0) be the Fibonacci sequence, defined by the recurrence Fn+2 = Fn+1+F-n, with initial values F-0 = 0 and F-1 = 1. In 2000, Florian Luca proved that F-10 = 55 is the largest number with only one distinct digit (repdigit) in the Fibonacci sequence. The Tribonacci numbers (T-n)(n >= 0) are like the Fibonacci numbers, but starting with 0,0, 1, and each term afterwards is the sum of the preceding three terms. In this paper, we prove that 44 is the largest Tribonacci number with only one distinct digit. Actually, we shall use transcendental tools to provide a general method for searching repdigits in a k-generalized Fibonacci sequence and we also make a conjecture based on some cases.
引用
收藏
页码:23 / 31
页数:9
相关论文
共 31 条
[11]  
KALMAN D, 1982, FIBONACCI QUART, V20, P73
[12]  
Kalman D., 2003, MATH MAG, V76, P167, DOI DOI 10.2307/3219318
[13]  
Kessler D, 2004, FIBONACCI QUART, V42, P266
[14]   The Binet formula, sums and representations of generalized Fibonacci p-numbers [J].
Kilic, Emrah .
EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (03) :701-711
[15]  
Klaska J., 2008, ACTA MATH U OSTRAV, V16, P15
[16]  
Klaska J, 2010, FIBONACCI QUART, V48, P324
[17]  
Klaska J, 2010, FIBONACCI QUART, V48, P228
[18]  
Klaska J, 2010, FIBONACCI QUART, V48, P21
[19]  
Klaska J, 2008, FIBONACCI QUART, V46-47, P290
[20]   Tribonacci partition formulas modulo m [J].
Klaska, Jiri .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (03) :465-476