Performance of indoor optical femtocell by visible light communication

被引:49
作者
Cui, Kaiyun [1 ]
Quan, Jinguo [2 ,3 ]
Xu, Zhengyuan [4 ,5 ]
机构
[1] Univ Calif Riverside, Dept Elect Engn, Riverside, CA 92521 USA
[2] Harbin Inst Technol, Shenzhen Grad Sch, Dept Elect & Informat Engn, Shenzhen 518055, Peoples R China
[3] Tsinghua Univ, Grad Sch Shenzhen, Div Informat Sci & Technol, Shenzhen 518055, Peoples R China
[4] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[5] Tsinghua Univ, Tsinghua Natl Lab Informat Sci & Technol TNList, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Visible light communication; Optical femtocell; Dimming; Variable-PPM;
D O I
10.1016/j.optcom.2013.02.018
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Femotocell has been proposed and deployed to improve the indoor coverage and capacity of a cellular network. One big challenge in its deployment is the interference between the macrocell and femtocell cellular networks. In this paper we propose a new physical layer for the implementation of indoor femtocells - optical femtocells by LED-based visible light communication. A general system structure of the indoor optical femtocell network is first introduced. A combined wavelength division and code division multiple access scheme is proposed to differentiate cells and multiple users within a cell. This scheme coupled with directional beaming characteristics of the LEDs helps to mitigate intercell interference and intracell inference. The communication performance adopting the dimming compatible variable-PPM modulation suggested by the IEEE standard is analyzed. Monte-Carlo simulation is then carried out to reveal the system performance numerically under typical system settings and effects of various parameters. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:59 / 66
页数:8
相关论文
共 23 条
[1]  
Alexander S. B, 1997, SPIE
[2]  
[Anonymous], P 11 WORLD SCI ENG A
[3]  
[Anonymous], 2012, "IEEE Photon. Soc. Newslett.
[4]  
[Anonymous], 2011, WG802157 IEEE
[5]  
[Anonymous], IEIC TECH REP
[6]   3.4 Gbit/s visible optical wireless transmission based on RGB LED [J].
Cossu, G. ;
Khalid, A. M. ;
Choudhury, P. ;
Corsini, R. ;
Ciaramella, E. .
OPTICS EXPRESS, 2012, 20 (26) :B501-B506
[7]  
Cui K., 2009, P SOC PHOTO-OPT INS, V7464
[8]   Broadband Information Broadcasting Using LED-Based Interior Lighting [J].
Grubor, Jelena ;
Randel, Sebastian ;
Langer, Klaus-Dieter ;
Walewski, Joachim W. .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2008, 26 (21-24) :3883-3892
[9]  
Kahn T., 2012, P CCNC
[10]  
Kaiyun Cui, 2010, 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010), P621