Cutpoint decoupling and first passage times for random walks on graphs

被引:12
|
作者
Kirkland, SJ [1 ]
Neumann, M
机构
[1] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
[2] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
关键词
Markov chains; first passage times; random walks; cutpoint graphs;
D O I
10.1137/S0895479897318800
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
One approach to the computations for Markov chains, due to Meyer, is to break a problem down into corresponding computations for several related chains involving a smaller number of states. In this spirit, we focus on the mean first passage matrix associated with a random walk on a connected graph, and consider the problem of transforming the computation of that matrix into smaller tasks. We show that this is possible when there is a cutpoint in the graph and provide an explicit formula for the mean first passage matrix when this is the case.
引用
收藏
页码:860 / 870
页数:11
相关论文
共 50 条
  • [1] Analytical results for the distribution of first-passage times of random walks on random regular graphs
    Tishby, Ido
    Biham, Ofer
    Katzav, Eytan
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2022, 2022 (11):
  • [2] Invariance principles for the first passage times of perturbed random walks
    Larsson-Cohn, L
    STATISTICS & PROBABILITY LETTERS, 2000, 48 (04) : 347 - 351
  • [3] ASYMPTOTICS FOR THE FIRST PASSAGE TIMES OF LEVY PROCESSES AND RANDOM WALKS
    Denisov, Denis
    Shneer, Vsevolod
    JOURNAL OF APPLIED PROBABILITY, 2013, 50 (01) : 64 - 84
  • [4] Extreme first-passage times for random walks on networks
    Lawley, Sean D.
    PHYSICAL REVIEW E, 2020, 102 (06)
  • [5] FIRST-PASSAGE TIMES FOR RANDOM WALKS WITH NONIDENTICALLY DISTRIBUTED INCREMENTS
    Denisov, Denis
    Sakhanenko, Alexander
    Wachtel, Vitali
    ANNALS OF PROBABILITY, 2018, 46 (06): : 3313 - 3350
  • [6] ON THE FIRST PASSAGE TIMES FOR SYMMETRIC RANDOM WALKS WITHOUT THE LINDEBERG CONDITION
    Sakhanenko, Alexander Ivanovich
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2023, 20 (01): : 86 - 99
  • [7] EXPONENTIAL MOMENTS OF FIRST PASSAGE TIMES AND RELATED QUANTITIES FOR RANDOM WALKS
    Iksanov, Alexander
    Meiners, Matthias
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2010, 15 : 365 - 375
  • [8] Meeting times of random walks on graphs
    Bshouty, NH
    Higham, L
    Warpechowska-Gruca, J
    INFORMATION PROCESSING LETTERS, 1999, 69 (05) : 259 - 265
  • [10] Global mean first-passage times of random walks on complex networks
    Tejedor, V.
    Benichou, O.
    Voituriez, R.
    PHYSICAL REVIEW E, 2009, 80 (06):