Fast Desalination by Multilayered Covalent Organic Framework (COF) Nanosheets

被引:169
作者
Zhou, Wei
Wei, Mingjie [1 ]
Zhang, Xin
Xu, Fang
Wang, Yong [1 ]
机构
[1] Nanjing Tech Univ, Jiangsu Natl Synerget Innovat Ctr Adv Mat, State Key Lab Mat Oriented Chem Engn, Nanjing 211816, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
membrane separation; transport resistance; nonequilibrium molecular dynamics; covalent organic frameworks (COFs); desalination; WATER TRANSPORT; THIN-FILMS; MEMBRANES; FLOW; INTERFACE; DYNAMICS; CAPTURE; GROWTH; FLUX;
D O I
10.1021/acsami.9b01883
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Covalent organic frameworks (COFs) are penetrated with uniform and ordered nanopores, implying their great potential in molecular/ion separations. As an imine-linked, stable COF, TpPa-1 is receiving tremendous interest for molecular sieving membranes. Theoretically, atomically thin TpPa-1 monolayers exhibit extremely high water permeance but unfortunately no rejection to ions because of its large pore size ( similar to 1.58 nm). The COF monolayers tend to stack to form laminated multilayers, but how this stacking influences water transport and ion rejections remains unknown. Herein, we investigate the transport behavior of water and salt ions through multilayered TpPa-1 COFs by nonequilibrium molecular dynamics simulations. By analyzing both the interfacial and interior resistance for water transport, we reveal that with rising stacking number of COF multilayers exhibit increasing ion rejections at the expense of water permeance. More importantly, stacking in the offset eclipsed fashion significantly reduces the equivalent pore size of COF multilayers to 0.89 nm, and ion rejection is correspondingly increased. Remarkably, 25 COF monolayers stacked in this fashion give 100% MgCl2 rejection, whereas water permeance remains 1 to 2 orders of magnitude higher than that of commercial nanofiltration membranes. This work demonstrates the rational design of fast membranes for desalination by tailoring stacking number and fashion of the COF monolayers.
引用
收藏
页码:16847 / 16854
页数:8
相关论文
共 52 条
[1]  
[Anonymous], 2012, MEMBRANE TECHNOLOGY, DOI DOI 10.1002/9781118359686.CH2
[2]   Exceptionally high CO2 storage in covalent-organic frameworks: Atomistic simulation study [J].
Babarao, Ravichandar ;
Jiang, Jianwen .
ENERGY & ENVIRONMENTAL SCIENCE, 2008, 1 (01) :139-143
[3]   Delamination of Layered Covalent Organic Frameworks [J].
Berlanga, Isadora ;
Luisa Ruiz-Gonzalez, Maria ;
Maria Gonzalez-Calbet, Jose ;
Fierro, Jose Luis G. ;
Mas-Balleste, Ruben ;
Zamora, Felix .
SMALL, 2011, 7 (09) :1207-1211
[4]   Mechanochemical Synthesis of Chemically Stable Isoreticular Covalent Organic Frameworks [J].
Biswal, Bishnu P. ;
Chandra, Suman ;
Kandambeth, Sharath ;
Lukose, Binit ;
Heine, Thomas ;
Banerjeet, Rahul .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (14) :5328-5331
[5]   Bulk Synthesis of Exfoliated Two-Dimensional Polymers Using Hydrazone-Linked Covalent Organic Frameworks [J].
Bunck, David N. ;
Dichtel, William R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (40) :14952-14955
[6]   Zwitterion Functionalized Carbon Nanotube/Polyamide Nanocomposite Membranes for Water Desalination [J].
Chan, Wai-Fong ;
Chen, Hang-yan ;
Surapathi, Anil ;
Taylor, Michael G. ;
Shao, Xiaohong ;
Marand, Eva ;
Johnson, J. Karl .
ACS NANO, 2013, 7 (06) :5308-5319
[7]   Chemically Stable Multilayered Covalent Organic Nanosheets from Covalent Organic Frameworks via Mechanical Delamination [J].
Chandra, Suman ;
Kandambeth, Sharath ;
Biswal, Bishnu P. ;
Lukose, Binit ;
Kunjir, Shrikant M. ;
Chaudhary, Minakshi ;
Babarao, Ravichandar ;
Heine, Thomas ;
Banerjee, Rahul .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (47) :17853-17861
[8]   Control of Crystallinity and Porosity of Covalent Organic Frameworks by Managing Interlayer Interactions Based on Self-Complementary π-Electronic Force [J].
Chen, Xiong ;
Addicoat, Matthew ;
Irle, Stephan ;
Nagai, Atsushi ;
Jiang, Donglin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (02) :546-549
[9]   Water Desalination across Nanoporous Graphene [J].
Cohen-Tanugi, David ;
Grossman, Jeffrey C. .
NANO LETTERS, 2012, 12 (07) :3602-3608
[10]   Patterned Growth of Oriented 2D Covalent Organic Framework Thin Films on Single-Layer Graphene [J].
Colson, John W. ;
Mann, Jason A. ;
DeBlase, Catherine R. ;
Dichtel, William R. .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2015, 53 (02) :378-384