On modular inequalities in variable LP spaces

被引:22
作者
Lerner, AK [1 ]
机构
[1] Bar Ilan Univ, Dept Math, IL-52900 Ramat Gan, Israel
关键词
D O I
10.1007/s00013-005-1302-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the Hardy-Littlewood maximal operator and a class of Calderon-Zygmund singular integrals satisfy the strong type modular inequality in variable L-P spaces if and only if the variable exponent p(x) similar to const.
引用
收藏
页码:538 / 543
页数:6
相关论文
共 13 条
[1]  
[Anonymous], HARMONIC ANAL
[2]  
Cruz-Uribe D, 2004, ANN ACAD SCI FENN-M, V29, P247
[3]  
Diening L, 2004, MATH INEQUAL APPL, V7, P245
[4]  
Diening L, 2003, J REINE ANGEW MATH, V563, P197
[5]  
DIENING L, 2003, 21 A LUDW U FREIB FA
[6]  
Gallardo D., 1988, PUBL MAT, V32, P261, DOI [DOI 10.5565/PUBLMAT_32288_09, 10.5565/PUBLMAT3228809]
[7]  
GARCIACUERVA J, 1985, N HOLLAND MATH STUDI, V116
[9]   Commutators of singular integrals on generalized LP spaces with variable exponent [J].
Karlovich, AY ;
Lerner, AK .
PUBLICACIONS MATEMATIQUES, 2005, 49 (01) :111-125
[10]  
Musielak J., 1983, LNM, V1034