Reverse-engineering flow-cytometry gating strategies for phenotypic labelling and high-performance cell sorting

被引:23
作者
Becht, Etienne [1 ]
Simoni, Yannick [1 ]
Coustan-Smith, Elaine [2 ]
Evrard, Maximilien [1 ]
Cheng, Yang [1 ]
Ng, Lai Guan [1 ]
Campana, Dario [2 ]
Newell, Evan W. [1 ]
机构
[1] Agcy Sci Technol & Res, Singapore Immunol Network, Singapore, Singapore
[2] Natl Univ Singapore, Dept Paediat, Singapore, Singapore
关键词
HETEROGENEITY; POPULATIONS; DATASETS;
D O I
10.1093/bioinformatics/bty491
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Recent flow and mass cytometers generate datasets of dimensions 20 to 40 and a million single cells. From these, many tools facilitate the discovery of new cell populations associated with diseases or physiology. These new cell populations require the identification of new gating strategies, but gating strategies become exponentially more difficult to optimize when dimensionality increases. To facilitate this step, we developed Hypergate, an algorithm which given a cell population of interest identifies a gating strategy optimized for high yield and purity. Results: Hypergate achieves higher yield and purity than human experts, Support Vector Machines and Random-Forests on public datasets. We use it to revisit some established gating strategies for the identification of innate lymphoid cells, which identifies concise and efficient strategies that allow gating these cells with fewer parameters but higher yield and purity than the current standards. For phenotypic description, Hypergate's outputs are consistent with fields' knowledge and sparser than those from a competing method.
引用
收藏
页码:301 / 308
页数:8
相关论文
共 23 条
[1]  
Aghaeepour N, 2013, NAT METHODS, V10, P228, DOI [10.1038/NMETH.2365, 10.1038/nmeth.2365]
[2]   Sensitive detection of rare disease-associated cell subsets via representation learning [J].
Arvaniti, Eirini ;
Claassen, Manfred .
NATURE COMMUNICATIONS, 2017, 8
[3]   Computational methods for trajectory inference from single-cell transcriptomics [J].
Cannoodt, Robrecht ;
Saelens, Wouter ;
Saeys, Yvan .
EUROPEAN JOURNAL OF IMMUNOLOGY, 2016, 46 (11) :2496-2506
[4]   Categorical Analysis of Human T Cell Heterogeneity with One-Dimensional Soli-Expression by Nonlinear Stochastic Embedding [J].
Cheng, Yang ;
Wong, Michael T. ;
van der Maaten, Laurens ;
Newell, Evan W. .
JOURNAL OF IMMUNOLOGY, 2016, 196 (02) :924-932
[5]   New markers for minimal residual disease detection in acute lymphoblastic leukemia [J].
Coustan-Smith, Elaine ;
Song, Guangchun ;
Clark, Christopher ;
Key, Laura ;
Liu, Peixin ;
Mehrpooya, Mohammad ;
Stow, Patricia ;
Su, Xiaoping ;
Shurtleff, Sheila ;
Pui, Ching-Hon ;
Downing, James R. ;
Campana, Dario .
BLOOD, 2011, 117 (23) :6267-6276
[6]  
Diggins KE, 2017, NAT METHODS, V14, P275, DOI [10.1038/NMETH.4149, 10.1038/nmeth.4149]
[7]   Innate lymphoid cells: A new paradigm in immunology [J].
Eberl, Gerard ;
Colonna, Marco ;
Di Santo, James P. ;
McKenzie, Andrew N. J. .
SCIENCE, 2015, 348 (6237)
[8]   Human innate lymphoid cells [J].
Hazenberg, Mette D. ;
Spits, Hergen .
BLOOD, 2014, 124 (05) :700-709
[9]   Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis [J].
Levine, Jacob H. ;
Simonds, Erin F. ;
Bendall, Sean C. ;
Davis, Kara L. ;
Amir, El-ad D. ;
Tadmor, Michelle D. ;
Litvin, Oren ;
Fienberg, Harris G. ;
Jager, Astraea ;
Zunder, Eli R. ;
Finck, Rachel ;
Gedman, Amanda L. ;
Radtke, Ina ;
Downing, James R. ;
Pe'er, Dana ;
Nolan, Garry P. .
CELL, 2015, 162 (01) :184-197
[10]   Gating mass cytometry data by deep learning [J].
Li, Huamin ;
Shaham, Uri ;
Stanton, Kelly P. ;
Yao, Yi ;
Montgomery, Ruth R. ;
Kluger, Yuval .
BIOINFORMATICS, 2017, 33 (21) :3423-3430