Comparison of Porous Iron Trimesates Basolite F300 and MIL-100(Fe) As Heterogeneous Catalysts for Lewis Acid and Oxidation Reactions: Roles of Structural Defects and Stability

被引:225
作者
Dhakshinamoorthy, Amarajothi [1 ]
Alvaro, Mercedes [1 ]
Horcajada, Patricia [2 ]
Gibson, Emma [3 ]
Vishnuvarthan, Muthusamy [3 ]
Vimont, Alexandre [3 ]
Greneche, Jean-Marc [4 ]
Serre, Christian [2 ]
Daturi, Marco [3 ]
Garcia, Hermenegildo [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Tecnol Quim CSIC UPV, Valencia 46022, Spain
[2] Univ Versailles St Quentin en Yvelines, Inst Lavoisier, UMR CNRS 8180, F-78035 Versailles, France
[3] Univ Caen, CNRS, ENSICAEN, Catalyse & Spectrochim Lab, F-14050 Caen, France
[4] LUNAM Univ Maine, IMMM UMR CNRS 6283, Inst Mol & Mat Mans, F-72085 Le Mans, France
关键词
heterogeneous catalysis; metal organic frameworks; Lewis acid solids; aerobic oxidations; METAL-ORGANIC FRAMEWORKS; AEROBIC OXIDATION; AMINES; SITES;
D O I
10.1021/cs300345b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two porous iron trimesates, namely, commercial Basolite F300 (Fe(BTC); BTC = 1,3,5-benzenetricarboxylate) with unknown structure and synthetic MIL-100(Fe) (MIL stands for Material of Institut Lavoisier) of well-defined crystalline structure, have been compared as heterogeneous catalysts for four different reactions. It was found that while for catalytic processes requiring strong Lewis acid sites, Fe(BTC) performs better, MIL-100(Fe) is the preferred catalyst for oxidation reactions. These catalytic results have been rationalized by a combined in situ infrared and Fe-57 Mossbauer spectroscopic characterization. It is proposed that the presence of extra Bronsted acid sites on the Fe(BTC) and the easier redox behavior of the MIL-100(Fe) could explain these comparative catalytic performances. The results illustrate the importance of structural defects (presence of weak Bronsted acid sites) and structural stability (MIL-100(Fe) is stable upon annealing at 280 degrees C despite Fe3+-to-Fe2+ reduction) on the catalytic activity of these two solids, depending on the reaction type.
引用
收藏
页码:2060 / 2065
页数:6
相关论文
共 34 条
[1]  
[Anonymous], [No title captured]
[2]  
[Anonymous], [No title captured], Patent No. [6,893,564 B2, 6893564]
[3]  
[Anonymous], [No title captured]
[4]   Metal organic framework adsorbent for biogas upgrading [J].
Cavenati, Simone ;
Grande, Carlos A. ;
Rodrigues, Alirio E. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2008, 47 (16) :6333-6335
[5]  
Clearfield A, 1998, PROG INORG CHEM, V47, P371
[6]   Engineering Metal Organic Frameworks for Heterogeneous Catalysis [J].
Corma, A. ;
Garcia, H. ;
Llabres i Xamena, F. X. L. I. .
CHEMICAL REVIEWS, 2010, 110 (08) :4606-4655
[7]   Industrial applications of metal-organic frameworks [J].
Czaja, Alexander U. ;
Trukhan, Natalia ;
Mueller, Ulrich .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (05) :1284-1293
[8]   Catalysis by metal nanoparticles embedded on metal-organic frameworks [J].
Dhakshinamoorthy, Amarajothi ;
Garcia, Hermenegildo .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (15) :5262-5284
[9]   Metal-organic frameworks as heterogeneous catalysts for oxidation reactions [J].
Dhakshinamoorthy, Amarajothi ;
Alvaro, Mercedes ;
Garcia, Hermenegildo .
CATALYSIS SCIENCE & TECHNOLOGY, 2011, 1 (06) :856-867
[10]   Aerobic Oxidation of Styrenes Catalyzed by an Iron Metal Organic Framework [J].
Dhakshinamoorthy, Amarajothi ;
Alvaro, Mercedes ;
Garcia, Hermenegildo .
ACS CATALYSIS, 2011, 1 (08) :836-840