LOWER BOUNDS FOR ENERGY OF MATRICES AND ENERGY OF REGULAR GRAPHS

被引:1
作者
Oboudi, Mohammad Reza [1 ]
机构
[1] Shiraz Univ, Coll Sci, Dept Math, Shiraz 7145744776, Iran
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2022年 / 46卷 / 05期
关键词
Energy of matrices; energy of graphs; energy of regular graphs; COMPLETE MULTIPARTITE GRAPHS; SPECTRAL-RADIUS;
D O I
10.46793/KgJMat2205.701O
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A - [a(ij)] be an n x n real symmetric matrix with eigenvalues lambda(1), ..., lambda(n). The energy of A, denoted by E(A), is defined as vertical bar lambda(1)vertical bar + ... + vertical bar lambda(n)vertical bar . We prove that if A is non-zero and vertical bar lambda(1)vertical bar >= ... >= vertical bar lambda(n)vertical bar , then (0.1) E(A) >= n vertical bar lambda(1)vertical bar vertical bar lambda(n)vertical bar + Sigma(1 <= i,j <= n) a(ij)(2)/vertical bar lambda(1)vertical bar + vertical bar lambda(n)vertical bar. In particular, we show that Psi(A) E(A) >= Sigma(1 <= i,j <= n) a(ij)(2), where Psi(A) is the maximum value of the sequence Sigma(n)(j=1) vertical bar a(1j)vertical bar, Sigma(n)(j=1) vertical bar a(2j)vertical bar, ..., Sigma(n)(j=1) vertical bar a(nj)vertical bar. The energy of a simple graph G, denoted by E(G), is defined as the energy of its adjacency matrix. As an application of inequality (0.1) we show that if G is a t-regular graph (t not equal 0) of order n with no eigenvalue in the interval (-1, 1), then E(G) >= 2tn/t+1 and the equality holds if and only if every connected component of G is the complete graph Kt+1 or the crown graph K-t+1(star).
引用
收藏
页码:701 / 709
页数:9
相关论文
共 50 条