A simple generative model applied to motor-imagery brain-computer interfacing

被引:0
作者
Geronimo, Andrew [1 ]
Schiff, Steven J. [1 ]
Kamrunnahar, Mst [1 ]
机构
[1] Penn State Univ, Dept Engn Sci & Mech, Ctr Neural Engn, University Pk, PA 16803 USA
来源
2011 5TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER) | 2011年
关键词
CLASSIFICATION; MU;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this study, a generative model is developed in order to translate neural activity into predictable device commands for brain-computer interface (BCI) applications. Generative approaches to BCI translation differ from widely-used discriminative approaches because they develop a model of brain activity dependent on the mental state of the user. Preliminary results indicate that two of three subjects were able to control the system at a level (>70% accurate) that makes it a viable option for practical use. The accuracy rate of the generative model is compared to the accuracy rate calculated offline using a linear discriminant approach. The advantages of such a system are discussed, and the ongoing opportunities for paradigm improvement are outlined.
引用
收藏
页码:400 / 403
页数:4
相关论文
共 13 条
  • [1] Neurophysiological predictor of SMR-based BCI performance
    Blankertz, Benjamin
    Sannelli, Claudia
    Haider, Sebastian
    Hammer, Eva M.
    Kuebler, Andrea
    Mueller, Klaus-Robert
    Curio, Gabriel
    Dickhaus, Thorsten
    [J]. NEUROIMAGE, 2010, 51 (04) : 1303 - 1309
  • [2] Jackson MM, 2010, HUM-COMPUT INT-SPRIN, P89, DOI 10.1007/978-1-84996-272-8_6
  • [3] A review of classification algorithms for EEG-based brain-computer interfaces
    Lotte, F.
    Congedo, M.
    Lecuyer, A.
    Lamarche, F.
    Arnaldi, B.
    [J]. JOURNAL OF NEURAL ENGINEERING, 2007, 4 (02) : R1 - R13
  • [4] A generative model approach for decoding in the visual event-related potential-based brain-computer interface speller
    Martens, S. M. M.
    Leiva, J. M.
    [J]. JOURNAL OF NEURAL ENGINEERING, 2010, 7 (02)
  • [5] Mu and beta rhythm topographies during motor imagery and actual movements
    McFarland, DJ
    Miner, LA
    Vaughan, TM
    Wolpaw, JR
    [J]. BRAIN TOPOGRAPHY, 2000, 12 (03) : 177 - 186
  • [6] Imagery of motor actions: Differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG
    Neuper, C
    Scherer, R
    Reiner, M
    Pfurtscheller, G
    [J]. COGNITIVE BRAIN RESEARCH, 2005, 25 (03): : 668 - 677
  • [7] Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks
    Pfurtscheller, G.
    Brunner, C.
    Schloegl, A.
    da Silva, F. H. Lopes
    [J]. NEUROIMAGE, 2006, 31 (01) : 153 - 159
  • [8] Event-related EEG/MEG synchronization and desynchronization: basic principles
    Pfurtscheller, G
    da Silva, FHL
    [J]. CLINICAL NEUROPHYSIOLOGY, 1999, 110 (11) : 1842 - 1857
  • [9] A fully automated correction method of EOG artifacts in EEG recordings
    Schloegl, A.
    Keinrath, C.
    Zimmermann, D.
    Scherer, R.
    Leeb, R.
    Pfurtscheller, G.
    [J]. CLINICAL NEUROPHYSIOLOGY, 2007, 118 (01) : 98 - 104
  • [10] Characterization of four-class motor imagery EEG data for the BCI-competition 2005
    Schloegl, Alois
    Lee, Felix
    Bischof, Horst
    Pfurtscheller, Gert
    [J]. JOURNAL OF NEURAL ENGINEERING, 2005, 2 (04) : L14 - L22