Signed double Roman domination in graphs

被引:31
作者
Ahangar, Hossein Abdollahzadeh [1 ]
Chellali, Mustapha [2 ]
Sheikholeslami, Seyed Mahmoud [3 ]
机构
[1] Babol Noshirvani Univ Technol, Dept Math, Shariati Ave, Babol Sar, Iran
[2] Univ Blida, Dept Math, LAMDA RO Lab, BP 270, Blida, Algeria
[3] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
关键词
Roman domination; Double Roman domination; Signed double Roman domination;
D O I
10.1016/j.dam.2018.09.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A signed double Roman dominating function (SDRDF) on a graph G = (V, E) is a function f : V(G) -> {-1, 1, 2, 3} such that (i) every vertex v with f(v) = -1 is adjacent to at least two vertices assigned a 2 or to at least one vertex w with f(w) = 3, (ii) every vertex v with f(v) = 1 is adjacent to at least one vertex w with f (w) >= 2 and (iii) Sigma(u is an element of n [v]) f(u) >= 1 holds for any vertex v. The weight of an SDRDF f is Sigma(u is an element of v) (G) f(u), the minimum weight of an SDRDF is the signed double Roman domination number gamma(sdR)(G) of G. In this paper, we prove that the signed double Roman domination problem is NP-complete for bipartite and chordal graphs. We also prove that for any tree T of order n >= 2. -5n+24/9 <= gamma(sdR)(T) <= n and we characterize all trees attaining each bound. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 16 条
[1]  
Abdollahzadeh Ahangar H., 2018, IRAN J SCI TECHNOL A
[2]  
Abdollahzadeh Ahangar H., 2018, DOUBLE ROMAN TREES
[3]   Signed Roman domination in graphs [J].
Ahangar, H. Abdollahzadeh ;
Henning, Michael A. ;
Loewenstein, Christian ;
Zhao, Yancai ;
Samodivkin, Vladimir .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 27 (02) :241-255
[4]   On the double Roman domination in graphs [J].
Ahangar, Hossein Abdollahzadeh ;
Chellali, Mustapha ;
Sheikholeslami, Seyed Mahmoud .
DISCRETE APPLIED MATHEMATICS, 2017, 232 :1-7
[5]   An upper bound on the double Roman domination number [J].
Amjadi, J. ;
Nazari-Moghaddam, S. ;
Sheikholeslami, S. M. ;
Volkmann, L. .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 36 (01) :81-89
[6]   Double Roman domination [J].
Beeler, Robert A. ;
Haynes, Teresa W. ;
Hedetniemi, Stephen T. .
DISCRETE APPLIED MATHEMATICS, 2016, 211 :23-29
[7]   Roman domination in graphs [J].
Cockayne, EJ ;
Dreyer, PA ;
Hedetniemi, SM ;
Hedetniemi, ST .
DISCRETE MATHEMATICS, 2004, 278 (1-3) :11-22
[8]  
Henning MA, 2016, GRAPH COMBINATOR, V32, P175, DOI 10.1007/s00373-015-1536-3
[9]   Signed Roman k-domination in trees [J].
Henning, Michael A. ;
Volkmann, Lutz .
DISCRETE APPLIED MATHEMATICS, 2015, 186 :98-105
[10]  
Hickey G, 2008, EVOL BIOINFORM, V4, P17