An Experimental and Computational Study on the Orthotropic Failure of Separators for Lithium-Ion Batteries

被引:23
|
作者
Bulla, Marian [1 ]
Kolling, Stefan [2 ]
Sahraei, Elham [3 ,4 ]
机构
[1] Altair Engn GmbH, Eupener Str 129 BT, D-50933 Cologne, Germany
[2] TH Mittelhessen, Inst Mech & Mat, Wiesenstr 14, D-35390 Giessen, Germany
[3] Temple Univ, Elect Vehicle Safety Lab EVSL, 1947 N 12th St, Philadelphia, PA 19122 USA
[4] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
polyethylene separator; elasto-plasticity; orthotropy; failure criterion; finite element model; safety; crashworthiness; SHORT-CIRCUIT;
D O I
10.3390/en13174399
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In the present study, the mechanical properties of a dry-processed polyethylene (PE) separator are investigated in terms of deformation and failure limits. The focus is set on the anisotropic mechanical behavior of this material. A deeper understanding of the damage mechanism is important for further safety and crashworthiness investigations and predictions of damage before failure. It has been found that separator integrity is one of the crucial parts in preventing internal short circuit and thermal runaway in lithium-ion (Li-ion) batteries. Based on uniaxial tensile tests with local strain measurement, a novel failure criterion for finite element analysis (FEA), using the explicit FEA solver Altair Radioss, has been developed to predict the effect of high mechanical loads with respect to triaxiality, large plastic strain and orthotropy. Finally, a simulation model of a PE separator was developed combining the novel failure criterion with Hill's yield surface and a Swift-Voce hardening rule. The model succeeded in predicting the anisotropic response of the PE separator due to deformation and failure. The proposed failure model can also be combined with other constitutive material laws.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Thermal Stability and Electrochemical Properties of Separators for Lithium-ion Batteries
    Yi, Guangyuan
    Xu, Caiyun
    Liu, Wan
    Qu, Deyu
    Wang, Hongbing
    Tang, Haolin
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2023, 38 (06): : 1231 - 1241
  • [22] Characterization of composite cellulosic separators for rechargeable lithium-ion batteries
    Kuribayashi, I
    JOURNAL OF POWER SOURCES, 1996, 63 (01) : 87 - 91
  • [23] Advances in Nonwoven-Based Separators for Lithium-Ion Batteries
    Yu, Yan
    Liu, Man
    Chen, Ziye
    Zhang, Zhihao
    Qiu, Tian
    Hu, Zexu
    Xiang, Hengxue
    Zhu, Liping
    Xu, Guiyin
    Zhu, Meifang
    ADVANCED FIBER MATERIALS, 2023, 5 (06) : 1827 - 1851
  • [24] Thermal Stability and Electrochemical Properties of Separators for Lithium-ion Batteries
    易光远
    XU Caiyun
    LIU Wan
    屈德宇
    WANG Hongbing
    唐浩林
    Journal of Wuhan University of Technology(Materials Science), 2023, 38 (06) : 1231 - 1241
  • [25] Characterization of composite cellulosic separators for rechargeable lithium-ion batteries
    Asahi Chemical Industry Co, Ltd, Tokyo, Japan
    J Power Sources, 1 (87-91):
  • [26] Nanofiber-Based Membrane Separators for Lithium-ion Batteries
    Alcoutlabi, Mataz
    Lee, Hun
    Zhang, Xiangwu
    MULTIFUNCTIONAL POLYMERIC AND HYBRID MATERIALS, 2015, 1718 : 157 - 161
  • [27] A Review of Nonaqueous Electrolytes, Binders, and Separators for Lithium-Ion Batteries
    Xing, Jiale
    Bliznakov, Stoyan
    Bonville, Leonard
    Oljaca, Miodrag
    Maric, Radenka
    ELECTROCHEMICAL ENERGY REVIEWS, 2022, 5 (04)
  • [28] Magnesium Borate Fiber Coating Separators with High Lithium-Ion Transference Number for Lithium-Ion Batteries
    Wang, Xin
    Peng, Longqing
    Hua, Haiming
    Liu, Yizheng
    Zhang, Peng
    Zhao, Jinbao
    CHEMELECTROCHEM, 2020, 7 (05) : 1187 - 1192
  • [29] Separators for Lithium Ion Batteries
    G.C.Li
    H.P.Zhang
    Y.P.Wu
    复旦学报(自然科学版), 2007, (05) : 834 - 834
  • [30] Lithium aluminate-based ceramic membranes as separators for lithium-ion batteries
    Raja, M.
    Sanjeev, Ganesh
    Kumar, T. Prem
    Stephan, A. Manuel
    CERAMICS INTERNATIONAL, 2015, 41 (02) : 3045 - 3050