The world as quantized minimal surfaces

被引:11
作者
Arnlind, Joakim [1 ]
Hoppe, Jens [2 ]
机构
[1] Linkoping Univ, Dept Math, S-58183 Linkoping, Sweden
[2] Sogang Univ, Korea Inst Adv Study, Royal Inst Technol, Seoul, South Korea
关键词
MODEL;
D O I
10.1016/j.physletb.2013.05.022
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
It is pointed out that the equations Sigma(d)(i=1)[X-i, [X-i, X-j]] = 0 (and its super-symmetrizations, playing a central role in M-theory matrix models) describe non-commutative minimal surfaces - and can be solved as such. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:397 / 400
页数:4
相关论文
共 15 条
[1]  
[Anonymous], GRUNDLEHREN MATH WIS
[2]  
[Anonymous], OPERA OMNIA 1
[3]  
Arnlind J., ARXIV13010757
[4]  
ARNLIND J, 2008, THESIS ROYAL I TECHN
[5]  
Arnlind J., 2009, JHEP, V0906, P047
[6]  
Arnlind J, 2012, J DIFFER GEOM, V91, P1
[7]   Discrete Minimal Surface Algebras [J].
Arnlind, Joakim ;
Hoppe, Jens .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2010, 6
[8]  
Arnlind J, 2009, COMMUN MATH PHYS, V288, P403, DOI 10.1007/s00220-009-0766-8
[9]   M theory as a matrix model: A conjecture [J].
Banks, T ;
Fischler, W ;
Shenker, SH ;
Susskind, L .
PHYSICAL REVIEW D, 1997, 55 (08) :5112-5128
[10]   Holomorphic curves from matrices [J].
Cornalba, L ;
Taylor, W .
NUCLEAR PHYSICS B, 1998, 536 (03) :513-552