Hot deformation behavior of 2060 alloy

被引:71
作者
Ou, Ling [1 ,2 ]
Zheng, Ziqiao [1 ]
Nie, Yufeng [1 ,2 ]
Jian, Haigen [2 ]
机构
[1] Cent S Univ, Sch Mat Sci & Engn, Changsha 410083, Peoples R China
[2] Hunan Univ Technol, Sch Met Engn, Zhuzhou 412000, Peoples R China
基金
美国国家科学基金会;
关键词
Hot deformation; Processing map; EBSD; 2060; Alloy; MICROSTRUCTURAL EVOLUTION; ALUMINUM-ALLOY; FLOW-STRESS; COMPRESSION; WORKING; TEMPERATURES; PREDICTION; MECHANISMS; AEROSPACE; STEEL;
D O I
10.1016/j.jallcom.2015.07.027
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The hot deformation behavior of 2060 alloy has been studied using thermal simulation test, EBSD technique and transmission electron microscopy. The flow stress could be described by a Zener-Hollomon parameter in hyperbolic sine function with the hot deformation activation energy of 205 kJ/mol. Dynamic recovery is the main dynamic soften mechanism of 2060 alloy. The relative volume fraction of subgrains increases from about 30% to 90% as the temperature rises from 350 degrees C to 400 degrees C. When the temperature is higher than 400 degrees C, both the relative volume fraction of the deformed grains and subgrains remain steady. The processing maps are similar in the strain ranging from 0.1 to 0.5, and the unsafe domains increase with the increase of strain. The optimum hot-working condition for 2060 alloy is 380-500 degrees C and 0.01-3 s(-1). (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:681 / 689
页数:9
相关论文
共 31 条
[1]   Comparison of torsion and compression constitutive analyses for elevated temperature deformation of Al-Li-Cu-Mn alloy [J].
Avramovic-Cingara, G ;
McQueen, HJ ;
Perovic, DD .
MATERIALS SCIENCE AND TECHNOLOGY, 2003, 19 (01) :11-19
[2]   Hot deformation mechanisms of a solution-treated Al-Li-Cu-Mg-Zr alloy [J].
AvramovicCingara, G ;
Perovic, DD ;
McQueen, HJ .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1996, 27 (11) :3478-3490
[3]  
EVANS RW, 1971, J I MET, V99, P4
[4]   Microstructure characterization of 7050 aluminum alloy during dynamic recrystallization and dynamic recovery [J].
Hu, H. E. ;
Zhen, L. ;
Zhang, B. Y. ;
Yang, L. ;
Chen, J. Z. .
MATERIALS CHARACTERIZATION, 2008, 59 (09) :1185-1189
[5]   Hot deformation behavior of 2026 aluminum alloy during compression at elevated temperature [J].
Huang, Xudong ;
Zhang, Hui ;
Han, Yi ;
Wu, Wenxiang ;
Chen, Jianghua .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (03) :485-490
[6]  
Jagan Reddy G., 2008, MAT SCI TECHNOL, V24, P725
[7]   Processing of an experimental aluminum-lithium alloy for controlled microstructure [J].
Jain, VK ;
Jata, KV ;
Rioja, RJ ;
Morgan, JT ;
Hopkins, AK .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 1998, 73 (1-3) :108-118
[8]   Development of process maps for superplastic forming of Weldalite™ 049 [J].
Kridli, GT ;
El-Gizawy, AS ;
Lederich, R .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1998, 244 (02) :224-232
[9]  
Kumar A.K., 1987, THESIS INDIAN I SCI
[10]   PREDICTION OF STEEL FLOW STRESSES AT HIGH-TEMPERATURES AND STRAIN RATES [J].
LAASRAOUI, A ;
JONAS, JJ .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1991, 22 (07) :1545-1588