The L1 penalized LAD estimator for high dimensional linear regression

被引:121
作者
Wang, Lie [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
High dimensional regression; LAD estimator; L-1; penalization; Variable selection; ASYMPTOTIC ANALYSIS; ROBUST REGRESSION; SELECTION; RECOVERY; LASSO; SHRINKAGE; ERROR;
D O I
10.1016/j.jmva.2013.04.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, the high-dimensional sparse linear regression model is considered, where the overall number of variables is larger than the number of observations. We investigate the L-1 penalized least absolute deviation method. Different from most of the other methods, the L-1 penalized LAD method does not need any knowledge of standard deviation of the noises or any moment assumptions of the noises. Our analysis shows that the method achieves near oracle performance, i.e. with large probability, the L-2 norm of the estimation error is of order O(root k log p/n). The result is true for a wide range of noise distributions, even for the Cauchy distribution. Numerical results are also presented. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:135 / 151
页数:17
相关论文
共 25 条
[1]  
Baraniuk R., 2010, INTRO COMPRESSIVE SE
[2]   ASYMPTOTIC THEORY OF LEAST ABSOLUTE ERROR REGRESSION [J].
BASSETT, G ;
KOENKER, R .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1978, 73 (363) :618-622
[3]   Square-root lasso: pivotal recovery of sparse signals via conic programming [J].
Belloni, A. ;
Chernozhukov, V. ;
Wang, L. .
BIOMETRIKA, 2011, 98 (04) :791-806
[4]   l1-PENALIZED QUANTILE REGRESSION IN HIGH-DIMENSIONAL SPARSE MODELS [J].
Belloni, Alexandre ;
Chernozhukov, Victor .
ANNALS OF STATISTICS, 2011, 39 (01) :82-130
[5]   SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR [J].
Bickel, Peter J. ;
Ritov, Ya'acov ;
Tsybakov, Alexandre B. .
ANNALS OF STATISTICS, 2009, 37 (04) :1705-1732
[6]   NEW VOLUME RATIO PROPERTIES FOR CONVEX SYMMETRICAL BODIES IN RN [J].
BOURGAIN, J ;
MILMAN, VD .
INVENTIONES MATHEMATICAE, 1987, 88 (02) :319-340
[7]   Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise [J].
Cai, T. Tony ;
Wang, Lie .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (07) :4680-4688
[8]   New Bounds for Restricted Isometry Constants [J].
Cai, T. Tony ;
Wang, Lie ;
Xu, Guangwu .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (09) :4388-4394
[9]   Shifting Inequality and Recovery of Sparse Signals [J].
Cai, T. Tony ;
Wang, Lie ;
Xu, Guangwu .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (03) :1300-1308
[10]  
Candes E. J., 2006, P INT C MATH MADR SP, V3, P1433, DOI DOI 10.4171/022-3/69