Global optimization algorithm for the nonlinear sum of ratios problem

被引:75
作者
Benson, HP [1 ]
机构
[1] Univ Florida, Warrington Coll Business Adm, Gainesville, FL 32611 USA
关键词
global optimization; sum of ratios; fractional programming; branch-and-bound algorithms;
D O I
10.1023/A:1013072027218
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This article presents a branch-and-bound algorithm for globally solving the nonlinear sum of ratios problem (P). The algorithm economizes the required computations by conducting the branch-and-bound search in R-p, rather than in R-n, where p is the number of ratios in the objective function of problem (P) and n is the number of decision variables in problem (P). To implement the algorithm, the main computations involve solving a sequence of convex programming problems for which standard algorithms are available.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 26 条
[1]  
ALMOGY Y, 1964, P 5 IFORS C, P359
[2]  
Bazaraa M.S., 2013, Nonlinear Programming-Theory and Algorithms, V3rd
[3]  
Benson HP, 1996, NAV RES LOG, V43, P765, DOI 10.1002/(SICI)1520-6750(199609)43:6<765::AID-NAV1>3.0.CO
[4]  
2-2
[5]   An outcome space branch and bound-outer approximation algorithm for convex multiplicative programming [J].
Benson, HP .
JOURNAL OF GLOBAL OPTIMIZATION, 1999, 15 (04) :315-342
[6]  
BENSON HP, 1995, HDB GLOBAL OPTIMIZAT
[7]  
Cambini A., 1989, Journal of Information & Optimization Sciences, V10, P65
[8]  
COLANTONI CS, 1969, ACCOUNT REV, V44, P467
[9]   ON CONTINUITY OF MINIMUM SET OF A CONTINUOUS FUNCTION [J].
DANTZIG, GB ;
FOLKMAN, J ;
SHAPIRO, N .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1967, 17 (03) :519-&
[10]  
DUR M, IN PRESS OPTIMIZATIO