Information-theoretic sensor planning for large-scale production surveillance via deep reinforcement learning

被引:5
|
作者
Tewari, Ashutosh [1 ]
Liu, Kuang-Hung [1 ]
Papageorgiou, Dimitri [1 ]
机构
[1] ExxonMobil Res & Engn Co, 1545 US 22, Annandale, NJ 08801 USA
关键词
Active sensing; Deep reinforcement learning; Markov decision process; Production surveillance; Sensor resource management;
D O I
10.1016/j.compchemeng.2020.106988
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Production surveillance is the task of monitoring oil and gas production from every well in a hydrocarbon field. Accurate surveillance is a basic necessity for several reasons that include improved resource management, better equipment health monitoring, reduced operational cost, and ultimately optimal hydrocarbon production. A key challenge in this task, especially for large fields with many wells, is the measurement of multiphase fluid flow using a limited number of noisy sensors of varying characteristics. Current surveillance practices are based on fixed utilization schedules of such flow sensors, which rarely change over time. Such a passive mode of sensing is completely agnostic to surveillance performance and thus often fails to achieve a desired accuracy. Here we propose an active surveillance approach, underpinned by the concept of value of information-based sensing. Borrowing some well-known concepts from Markov decision processes, reinforcement learning and artificial neural networks, we demonstrate that a practical active surveillance strategy can be devised, which can not only improve surveillance performance significantly, but also reduce usage of flow sensors. (C) 2020 Published by Elsevier Ltd.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] An Information-Theoretic Analysis of Bayesian Reinforcement Learning
    Gouverneur, Amaury
    Rodriguez-Galvez, Borja
    Oechtering, Tobias J.
    Skoglund, Mikael
    2022 58TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2022,
  • [2] Tractable large-scale deep reinforcement learning
    Sarang, Nima
    Poullis, Charalambos
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2023, 232
  • [3] Large-Scale Wildfire Mitigation Through Deep Reinforcement Learning
    Altamimi, Abdulelah
    Lagoa, Constantino
    Borges, Jose G.
    McDill, Marc E.
    Andriotis, C. P.
    Papakonstantinou, K. G.
    FRONTIERS IN FORESTS AND GLOBAL CHANGE, 2022, 5
  • [4] Deep Reinforcement Learning for Large-Scale Epidemic Control
    Libin, Pieter J. K.
    Moonens, Arno
    Verstraeten, Timothy
    Perez-Sanjines, Fabian
    Hens, Niel
    Lemey, Philippe
    Nowe, Ann
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: APPLIED DATA SCIENCE AND DEMO TRACK, ECML PKDD 2020, PT V, 2021, 12461 : 155 - 170
  • [5] A LARGE-SCALE PATH PLANNING ALGORITHM FOR UNDERWATER ROBOTS BASED ON DEEP REINFORCEMENT LEARNING
    Wang, Wenhui
    Li, Leqing
    Ye, Fumeng
    Peng, Yumin
    Ma, Yiming
    INTERNATIONAL JOURNAL OF ROBOTICS & AUTOMATION, 2024, 39 (03) : 204 - 210
  • [6] An Information-Theoretic Perspective on Intrinsic Motivation in Reinforcement Learning: A Survey
    Aubret, Arthur
    Matignon, Laetitia
    Hassas, Salima
    ENTROPY, 2023, 25 (02)
  • [7] Large-scale power inspection: A deep reinforcement learning approach
    Guan, Qingshu
    Zhang, Xiangquan
    Xie, Minghui
    Nie, Jianglong
    Cao, Hui
    Chen, Zhao
    He, Zhouqiang
    FRONTIERS IN ENERGY RESEARCH, 2023, 10
  • [8] Efficient Large-Scale Fleet Management via Multi-Agent Deep Reinforcement Learning
    Lin, Kaixiang
    Zhao, Renyu
    Xu, Zhe
    Zhou, Jiayu
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 1774 - 1783
  • [9] Deep Reinforcement Learning for Stabilization of Large-Scale Probabilistic Boolean Networks
    Moschoyiannis, Sotiris
    Chatzaroulas, Evangelos
    Sliogeris, Vytenis
    Wu, Yuhu
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2023, 10 (03): : 1412 - 1423
  • [10] Deep reinforcement learning for scheduling in large-scale networked control systems
    Redder, Adrian
    Ramaswamy, Arunselvan
    Quevedo, Daniel E.
    IFAC PAPERSONLINE, 2019, 52 (20): : 333 - 338