Electrical Measurement Under Atmospheric Conditions of PbSe Nanocrystal Thin Films Passivated by Remote Plasma Atomic Layer Deposition of Al2O3

被引:1
|
作者
Yoon, Woojun [1 ]
Smith, Anthony R. [1 ]
Foos, Edward E. [1 ]
Boercker, Janice E. [1 ]
Heuer, William B. [2 ]
Tischler, Joseph G. [1 ]
机构
[1] USN, Res Lab, Washington, DC 20375 USA
[2] USN Acad, Annapolis, MD 21401 USA
关键词
Carrier transport; nanocrystal; PbSe; remote plasma atomic layer deposition (ALD); thin-film transistor (TFT); MULTIPLE EXCITON GENERATION; QUANTUM; EMISSION; SOLIDS;
D O I
10.1109/TNANO.2012.2234761
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
PbSe nanocrystal thin-film transistors (TFTs) were passivated using remote plasma atomic layer deposition (ALD) of a similar to 10 nm thick Al2O3 film at 150 degrees C. By using a highly reactive remote oxygen plasma source, the time for one complete ALD cycle was about 15 s with growth rates of similar to 1.1 angstrom/cycle. The effective mobilities measured under atmospheric condition from Al2O3-passivated PbSe nanocrystal TFTs were comparable to the values reported previously for air-free PbSe nanocrystal TFTs, demonstrating that ALD Al2O3 layers prevent oxidation and degradation of nanocrystal films from air exposure. The variation in the effective mobility of passivated devices was also found to be negligible under ambient conditions over a period of 30 days. The results show that remote plasma ALD processing of Al2O3 is capable of producing an effective passivation layer on air-sensitive nanocrystals with high deposition rates at reduced temperature.
引用
收藏
页码:146 / 151
页数:6
相关论文
共 50 条
  • [1] Optical and electrical properties of ZnO nanocrystal thin films passivated by atomic layer deposited Al2O3
    Choi, Ji-Hyuk
    Kim, Jungwoo
    Oh, Soong Ju
    Kim, Daekyoung
    Kim, Yong-Hoon
    Chae, Heeyeop
    Kim, Hyoungsub
    METALS AND MATERIALS INTERNATIONAL, 2016, 22 (04) : 723 - 729
  • [2] Optical and electrical properties of ZnO nanocrystal thin films passivated by atomic layer deposited Al2O3
    Ji-Hyuk Choi
    Jungwoo Kim
    Soong Ju Oh
    Daekyoung Kim
    Yong-Hoon Kim
    Heeyeop Chae
    Hyoungsub Kim
    Metals and Materials International, 2016, 22 : 723 - 729
  • [3] Atomic layer deposition of Al2O3 thin films on diamond
    Kawakami, N
    Yokota, Y
    Tachibana, T
    Hayashi, K
    Kobashi, K
    DIAMOND AND RELATED MATERIALS, 2005, 14 (11-12) : 2015 - 2018
  • [4] Properties of Al2O3 thin films grown by atomic layer deposition
    Froehlich, K.
    Micusik, M.
    Dobrocka, E.
    Siffalovic, P.
    Gucmann, F.
    Fedor, J.
    NINTH INTERNATIONAL CONFERENCE ON ADVANCED SEMICONDUCTOR DEVICES AND MICROSYSTEMS, 2012, : 171 - 174
  • [5] Thermal stability of atomic layer deposition Al2O3 thin films
    Lu Hong-Liang
    Xu Min
    Ding Shi-Jin
    Ren Jie
    Zhang Wei
    JOURNAL OF INORGANIC MATERIALS, 2006, 21 (05) : 1217 - 1222
  • [6] Annealing of Al2O3 thin films prepared by atomic layer deposition
    Zhang, L.
    Jiang, H. C.
    Liu, C.
    Dong, J. W.
    Chow, P.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (12) : 3707 - 3713
  • [7] Atomic Layer Deposition Al2O3 Thin Films in Magnetized Radio Frequency Plasma Source
    Li, Xingcun
    Chen, Qiang
    Sang, Lijun
    Yang, Lizhen
    Liu, Zhongwei
    Wang, Zhenduo
    PROCEEDING OF THE FOURTH INTERNATIONAL CONFERENCE ON SURFACE AND INTERFACE SCIENCE AND ENGINEERING, 2011, 18
  • [8] Roll-to-Roll Atmospheric Atomic Layer Deposition of Al2O3 Thin Films on PET Substrates
    Ali, Kamran
    Choi, Kyung-Hyun
    Muhammad, Nauman Malik
    CHEMICAL VAPOR DEPOSITION, 2014, 20 (10-12) : 380 - 387
  • [9] Atomic layer deposition of Al2O3 on S-passivated Ge
    Sioncke, S.
    Ceuppens, J.
    Lin, D.
    Nyns, L.
    Delabie, A.
    Struyf, H.
    De Gendt, S.
    Mueller, M.
    Beckhoff, B.
    Caymax, M.
    MICROELECTRONIC ENGINEERING, 2011, 88 (07) : 1553 - 1556
  • [10] Optical properties of Al2O3 thin films grown by atomic layer deposition
    Kumar, Pradeep
    Wiedmann, Monika K.
    Winter, Charles H.
    Avrutsky, Ivan
    APPLIED OPTICS, 2009, 48 (28) : 5407 - 5412