X-ray Photoelectron Spectroscopy Analysis of Wood Degradation in Old Architecture

被引:14
|
作者
Sun, He [2 ]
Yang, Yan [1 ]
Han, Yanxia [1 ]
Tian, Mingjin [1 ]
Li, Bin [1 ]
Han, Li [3 ]
Wang, Aifeng [1 ]
Wang, Wei [1 ]
Zhao, Rui [1 ]
He, Yiming [1 ]
机构
[1] Nanyang Inst Technol, Sch Architecture, Nanyang City 473000, Henan, Peoples R China
[2] Southwest Forestry Univ, Coll Mat Sci & Engn, Kunming 650224, Yunnan, Peoples R China
[3] Nanyang Inst Technol, Henan Key Lab Zhang Zhongjing Formulae & Herbs Im, Nanyang City 473000, Henan, Peoples R China
来源
BIORESOURCES | 2020年 / 15卷 / 03期
基金
美国国家科学基金会;
关键词
Xichuan Guild Hall; Old architectures; Wooden components; Degradation behavior; Chemical composition changes; XPS; CHEMICAL-COMPOSITION; WHITE-ROT; XPS; FTIR; SURFACES; LIGNIN; DECAY;
D O I
10.15376/biores.15.3.6332-6343
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
To investigate the decay mechanisms of red oak (Quercus rubra) and hemor (Schima spp.) woods in the old architectural structure of Xichuan Guild Hall, chemical composition changes were determined and analyzed with X-ray photoelectron spectroscopy (XPS). The results showed that decaying resulted in a noticeable decrease of the O/C from 0.59 to 0.42 in the red oak wooden components. The increase of C-1 contribution, decrease of C-4 contribution, increase of O-1 and O-3 contributions, and decrease of O-2 contribution indicated that the carbohydrates in red oak wooden components can be easily degraded by fungi compared with lignin. Moreover, decaying resulted in a slight decrease of the O/C from 0.49 to 0.47 in the hemor wooden components. The results of increase of C-1 contribution, decrease of C-3 and C-4 contributions, increase of O-1, and decrease of O-2 and O-3 contributions indicated that carbohydrate and lignin were all degraded by fungi.
引用
收藏
页码:6332 / 6343
页数:12
相关论文
共 50 条
  • [1] X-ray photoelectron spectroscopy
    Benoît, R
    VIDE-SCIENCE TECHNIQUE ET APPLICATIONS, 2003, 58 (308): : 219 - +
  • [2] XPS insights: Sample degradation in X-ray photoelectron spectroscopy
    Morgan, David J.
    SURFACE AND INTERFACE ANALYSIS, 2023, 55 (05) : 331 - 335
  • [3] Surface analysis using X-ray photoelectron spectroscopy
    Mahoney, Janet
    Monroe, Caroline
    Swartley, Anya M.
    Ucak-Astarlioglu, Mine G.
    Zoto, Christopher A.
    SPECTROSCOPY LETTERS, 2020, 53 (10) : 726 - 736
  • [4] Quantitative analysis of saccharides by X-ray photoelectron spectroscopy
    Stevens, Joanna S.
    Schroeder, Sven L. M.
    SURFACE AND INTERFACE ANALYSIS, 2009, 41 (06) : 453 - 462
  • [5] Basis of surface analysis by X-ray photoelectron spectroscopy
    Ishida, T
    JOURNAL OF JAPANESE SOCIETY OF TRIBOLOGISTS, 2005, 50 (06) : 459 - 464
  • [6] Introduction to x-ray photoelectron spectroscopy
    Stevie, Fred A.
    Donley, Carrie L.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2020, 38 (06):
  • [7] X-ray photoelectron spectroscopy of conodonts
    Leel, GSH
    Mar, GL
    Rose, HR
    Marshall, CP
    Young, BR
    Skilbeck, CG
    Wilson, MA
    ORGANIC GEOCHEMISTRY, 1998, 28 (11) : 759 - 765
  • [8] X-ray photoelectron spectroscopy of ferroelectrics
    Grigas, Jonas
    Talik, Ewa
    Lazauskas, Valentinas
    FERROELECTRICS, 2007, 347 : 86 - 100
  • [9] Quantitative Analysis of Adsorbed Proteins by X-ray Photoelectron Spectroscopy
    Ray, Santanu
    Shard, Alexander G.
    ANALYTICAL CHEMISTRY, 2011, 83 (22) : 8659 - 8666
  • [10] Application of X-ray photoelectron spectroscopy in the analysis of polymer surfaces
    Huiban, Y
    Lynch, J
    VIDE-SCIENCE TECHNIQUE ET APPLICATIONS, 2003, 58 (308): : 316 - +