GEODESICS IN THE SPACE OF KAHLER METRICS

被引:32
作者
Lempert, Laszlo [1 ]
Vivas, Liz [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
COMPLEX MONGE-AMPERE; MANIFOLDS; EQUATION; DOMAINS;
D O I
10.1215/00127094-2142865
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X, omega) be a compact Kahler manifold. As discovered in the late 1980s by Mabuchi, the set H-0 of Kahler forms cohomologous to omega has the natural structure of an infinite-dimensional Riemannian manifold. We address the question of whether any two points in H-0 can be connected by a smooth geodesic and show that the answer, in general, is "no."
引用
收藏
页码:1369 / 1381
页数:13
相关论文
共 14 条
[1]  
[Anonymous], 2012, Adv. Lect. Math
[2]  
[Anonymous], 1933, Fundamenta Mathematicae
[3]   FOLIATIONS AND COMPLEX MONGE-AMPERE EQUATIONS [J].
BEDFORD, E ;
KALKA, M .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1977, 30 (05) :543-571
[4]   STABILITY OF ENVELOPES OF HOLOMORPHY AND THE DEGENERATE MONGE-AMPERE EQUATION [J].
BEDFORD, E .
MATHEMATISCHE ANNALEN, 1982, 259 (01) :1-28
[5]   EXTREMAL PLURISUBHARMONIC FUNCTIONS FOR CERTAIN DOMAINS IN C2 [J].
BEDFORD, E .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1979, 28 (04) :613-626
[6]  
BEDFORD E., INVENT MATH, V50, P129, DOI [10.1007/BF01390286, DOI 10.1007/BF01390286.(1370)]
[7]  
BOCHNER S., 1948, PRINCETON MATH SER
[8]  
Chen XX, 2000, J DIFFER GEOM, V56, P189
[9]  
Donaldson S.K., 1999, American Mathematical Society Translations-Series, V196, P13
[10]  
Donaldson SK., 2002, J. Symplectic Geom., V1, P171, DOI 10.4310/JSG.2001.v1.n2.a1