An application of the Hasse-Weil bound to rational functions over finite fields

被引:2
作者
Hou, Xiang-dong [1 ]
Iezzi, Annamaria [1 ]
机构
[1] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
关键词
Aubry-Perret bound; finite field; Hasse-Weil bound; rational function;
D O I
10.4064/aa190701-5-12
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:207 / 216
页数:10
相关论文
共 10 条
[1]  
Aubry Y, 1996, ARITHMETIC, GEOMETRY AND CODING THEORY, P1
[2]   On a conjecture about a class of permutation trinomials [J].
Bartoli, Daniele .
FINITE FIELDS AND THEIR APPLICATIONS, 2018, 52 :30-50
[3]   Improved explicit estimates on the number of solutions of equations over a finite field [J].
Cafure, A ;
Matera, G .
FINITE FIELDS AND THEIR APPLICATIONS, 2006, 12 (02) :155-185
[4]   Determination of a class of permutation trinomials in characteristic three [J].
Hou, Xiang-dong ;
Tu, Ziran ;
Zeng, Xiangyong .
FINITE FIELDS AND THEIR APPLICATIONS, 2020, 61
[5]   On a class of permutation trinomials in characteristic 2 [J].
Hou, Xiang-dong .
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2019, 11 (06) :1199-1210
[6]  
Lang S., 1954, AM J MATH, V76, P819
[7]  
Lidl R., 1997, Finite Fields, V20
[8]  
Stichtenoth H., 1993, ALGEBRAIC FUNCTION F
[9]   A class of new permutation trinomials [J].
Tu, Ziran ;
Zeng, Xiangyong ;
Li, Chunlei ;
Helleseth, Tor .
FINITE FIELDS AND THEIR APPLICATIONS, 2018, 50 :178-195
[10]  
Weil A., 1948, Sur les courbes algebriques et les varietes qui s'en deduisent, V7