Dilation of Dual Frame Pairs in Hilbert C*-Modules

被引:18
作者
Han, Deguang [1 ]
Jing, Wu [2 ]
Larson, David [3 ]
Li, Pengtong [4 ]
Mohapatra, Ram N. [1 ]
机构
[1] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
[2] Fayetteville State Univ, Dept Math & Comp Sci, Fayetteville, NC 28301 USA
[3] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[4] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Jiangsu, Peoples R China
关键词
Frames; Riesz bases; dilation; dual frame pairs; frame vectors; unitary groups; Hilbert C*-modules; ALGEBRAS;
D O I
10.1007/s00025-011-0195-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the geometric properties for Hilbert C*-modular frames. We show that any dual frame pair in a Hilbert C*-module is an orthogonal compression of a Riesz basis and its canonical dual for some larger Hilbert C*-module. This generalizes the Hilbert space dual frame pair dilation theory due to Casazza, Han and Larson to dual Hilbert C*-modular frame pairs. Additionally, for any Hilbert C*-modular dual frame pair induced by a group of unitary operators, we show that there is a dilated dual pair which inherits the same group structure.
引用
收藏
页码:241 / 250
页数:10
相关论文
共 50 条
  • [41] CONTINUITY OF THE POLAR DECOMPOSITION FOR UNBOUNDED OPERATORS ON HILBERT C*-MODULES
    Sharifi, Kamran
    GLASNIK MATEMATICKI, 2010, 45 (02) : 505 - 512
  • [42] Pairs of dual Gabor frames generated by functions of Hilbert-Schmidt type
    Lasse Hjuler Christiansen
    Advances in Computational Mathematics, 2015, 41 : 1101 - 1118
  • [43] Pairs of dual Gabor frames generated by functions of Hilbert-Schmidt type
    Christiansen, Lasse Hjuler
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2015, 41 (06) : 1101 - 1118
  • [44] Frame Spectral Pairs and Exponential Bases
    Christina Frederick
    Azita Mayeli
    Journal of Fourier Analysis and Applications, 2021, 27
  • [45] Frame Spectral Pairs and Exponential Bases
    Frederick, Christina
    Mayeli, Azita
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2021, 27 (05)
  • [46] Moore-Penrose inverses of Gram operators on Hilbert C*-modules
    Moslehian, M. S.
    Sharifi, K.
    Forough, M.
    Chakoshi, M.
    STUDIA MATHEMATICA, 2012, 210 (02) : 189 - 196
  • [47] Orthogonality-preserving, C*-conformal and conformal module mappings on Hilbert C*-modules
    Frank, Michael
    Mishchenko, Alexander S.
    Pavlov, Alexander A.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (02) : 327 - 339
  • [48] Maps preserving semi-Fredholm operators on Hilbert C*-modules
    Aghasizadeh, T.
    Hejazian, S.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 354 (02) : 625 - 629
  • [49] ALGEBRA-VALUED G-FRAMES IN HILBERT C*-MODULES
    Asadi, Mohammad B.
    Hassanpour-Yakhdani, Z.
    OPERATORS AND MATRICES, 2019, 13 (01): : 197 - 201
  • [50] On Stability of G-Frames in Hilbert Pro-C∗-Modules
    Zahra Ahmadi Moosavi
    Akbar Nazari
    Acta Mathematica Vietnamica, 2021, 46 : 149 - 161