Degeneracy-Free Particle Filter: Ensemble Kalman Smoother Multiple Distribution Estimation Filter

被引:6
作者
Murata, Masaya [1 ]
Kawano, Isao [1 ]
Inoue, Koichi [1 ]
机构
[1] Japan Aerosp Explorat Agcy, Tsukuba Space Ctr, Tsukuba 3058505, Japan
关键词
Ensemble Kalman smoother (EnKS); extended or unscented Kalman multiple distribution estimation filter (EnKS-EKMDEF or EnKS-UKMDEF); multiple distribution estimation filter (MDEF); nonlinear growth model; particle filter (PF); satellite reentry;
D O I
10.1109/TAC.2022.3185007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose the ensemble Kalman smoother multiple distribution estimation filter (EnKS-MDEF) for nonlinear state estimation problems. The EnKS-MDEF is an example of the multiple distribution estimation filter (MDEF), which is a particle filter (PF) that estimates the filtered state probability density function (pdf) using multiple conditional state pdfs. The one step behind (OSB) smoothed state pdf used for calculating the filtered state pdf of the MDEF is approximated by the ensemble Kalman smoother (EnKS). Then, the particle weights for the EnKS-MDEF remain equal during the filter execution, which indicates that the EnKS-MDEF is a degeneracy-free PF. Since, the MDEF and the EnKS-MDEF, both estimate the OSB smoothed state pdf prior to calculating the filtered state pdf, these filters provide a simultaneous estimation of filtered and OSB smoothed states. The examples of the EnKS-MDEF are the EnKS-extended and unscented Kalman multiple distribution estimation filters, and their filtering and OSB smoothing performances are evaluated and compared with those for the representative filters and smoothers using a benchmark simulation problems.
引用
收藏
页码:6956 / 6961
页数:6
相关论文
共 20 条
[1]  
[Anonymous], 2000, NIPS 00 P 13 INT C N
[2]   Cubature Kalman Filters [J].
Arasaratnam, Ienkaran ;
Haykin, Simon .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (06) :1254-1269
[3]   On sequential Monte Carlo sampling methods for Bayesian filtering [J].
Doucet, A ;
Godsill, S ;
Andrieu, C .
STATISTICS AND COMPUTING, 2000, 10 (03) :197-208
[4]  
Doucet A., 2001, SEQUENTIAL MONTE CAR
[5]  
Evensen G, 2000, MON WEATHER REV, V128, P1852, DOI 10.1175/1520-0493(2000)128<1852:AEKSFN>2.0.CO
[6]  
2
[8]   NOVEL-APPROACH TO NONLINEAR NON-GAUSSIAN BAYESIAN STATE ESTIMATION [J].
GORDON, NJ ;
SALMOND, DJ ;
SMITH, AFM .
IEE PROCEEDINGS-F RADAR AND SIGNAL PROCESSING, 1993, 140 (02) :107-113
[9]   Gaussian filters for nonlinear filtering problems [J].
Ito, K ;
Xiong, KQ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (05) :910-927
[10]   Refined Nonlinear Gaussian Quadrature Filter [J].
Jia, Bin ;
Xin, Ming .
2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, :5366-5371