Atomic Arrangement Engineering of Metallic Nanocrystals for Energy-Conversion Electrocatalysis

被引:244
作者
Liang, Jiashun [1 ]
Ma, Feng [1 ]
Hwang, Sooyeon [3 ]
Wang, Xiaoxia [2 ]
Sokolowski, Joshua [2 ]
Li, Qing [1 ]
Wu, Gang [2 ]
Su, Dong [3 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Sch Mat Sci & Engn, Wuhan 430074, Hubei, Peoples R China
[2] SUNY Buffalo, Dept Chem & Biol Engn, Buffalo, NY 14260 USA
[3] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11953 USA
关键词
OXYGEN REDUCTION REACTION; ASSEMBLED FEPT NANOPARTICLES; ORDERED INTERMETALLIC NANOPARTICLES; INDUCED PHASE-TRANSFORMATION; CORE-SHELL; HYDROGEN EVOLUTION; MAGNETIC-PROPERTIES; FACILE SYNTHESIS; ALLOY NANOPARTICLES; SURFACE-STRUCTURE;
D O I
10.1016/j.joule.2019.03.014
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Well-defined metallic nanocrystals (NCs) have been explored as effective electrocatalysts for energy conversion and storage technologies (e.g., fuel cell or water splitting). It is commonly known that electrocatalytic performance can be enhanced by controlling composition, size, and surface morphology. In addition, precisely controlling the atomic arrangement inside NCs can improve performance, with their electronic structures being optimized via interfacial coupling. In this review, we summarize recent advances in atomic arrangement engineering approaches of metallic NCs. First, we introduce thermodynamic and kinetic principles to provide a basic understanding on atomic structure-property correlations. Then, several representative cases of atomic ordering and planar stacking engineering are highlighted for different electrocatalytic processes. Finally, perspectives on the roles of calculations, characterization, and practical applications are outlined.
引用
收藏
页码:956 / 991
页数:36
相关论文
共 221 条
  • [1] Alloyeau D, 2009, NAT MATER, V8, P940, DOI [10.1038/nmat2574, 10.1038/NMAT2574]
  • [2] Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review
    Anantharaj, Sengeni
    Ede, Sivasankara Rao
    Sakthikumar, Kuppan
    Karthick, Kannimuthu
    Mishra, Soumyaranjan
    Kundu, Subrata
    [J]. ACS CATALYSIS, 2016, 6 (12): : 8069 - 8097
  • [3] Arrhenius S., 1889, ber die Dissociationswrme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte 4U, V4, P96, DOI DOI 10.1515/ZPCH-1889-0408
  • [4] Current Status and Future Development of Catalyst Materials and Catalyst Layers for Proton Exchange Membrane Fuel Cells: An Industrial Perspective
    Banham, Dustin
    Ye, Siyu
    [J]. ACS ENERGY LETTERS, 2017, 2 (03): : 629 - 638
  • [5] Barlow W., 1883, NATURE, V29, P186, DOI [DOI 10.1038/029186A0, 10.1038/029186a0]
  • [6] A class of non-precious metal composite catalysts for fuel cells
    Bashyam, Rajesh
    Zelenay, Piotr
    [J]. NATURE, 2006, 443 (7107) : 63 - 66
  • [7] Control of Architecture in Rhombic Dodecahedral Pt-Ni Nanoframe Electrocatalysts
    Becknell, Nigel
    Son, Yoonkook
    Kim, Dohyung
    Li, Dongguo
    Yu, Yi
    Niu, Zhiqiang
    Lei, Teng
    Sneed, Brian T.
    More, Karren L.
    Markovic, Nenad M.
    Stamenkovic, Vojislav R.
    Yang, Peidong
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (34) : 11678 - 11681
  • [8] Atomic Structure of Pt3Ni Nanoframe Electrocatalysts by in Situ X-ray Absorption Spectroscopy
    Becknell, Nigel
    Kang, Yijin
    Chen, Chen
    Resasco, Joaquin
    Kornienko, Nikolay
    Guo, Jinghua
    Markovic, Nenad M.
    Somorjai, Gabor A.
    Stamenkovic, Vojislav R.
    Yang, Peidong
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (50) : 15817 - 15824
  • [9] Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction
    Bing, Yonghong
    Liu, Hansan
    Zhang, Lei
    Ghosh, Dave
    Zhang, Jiujun
    [J]. CHEMICAL SOCIETY REVIEWS, 2010, 39 (06) : 2184 - 2202
  • [10] Braun A., 2017, X-ray Studies on Electrochemical Systems: Synchrotron Methods for Energy Materials