PARP1 proximity proteomics reveals interaction partners at stressed replication forks

被引:28
作者
Mosler, Thorsten [1 ]
Baymaz, H. Irem [1 ]
Graef, Justus F. [1 ]
Mikicic, Ivan [1 ]
Blattner, Georges [1 ]
Bartlett, Edward [3 ]
Ostermaier, Matthias [1 ]
Piccinno, Rossana [1 ]
Yang, Jiwen [1 ]
Voigt, Andrea [1 ]
Gatti, Marco [3 ]
Pellegrino, Stefania [4 ]
Altmeyer, Matthias [4 ]
Luck, Katja [1 ]
Ahel, Ivan [3 ]
Roukos, Vassilis [1 ]
Beli, Petra [1 ,2 ]
机构
[1] Inst Mol Biol IMB, D-55128 Mainz, Germany
[2] Johannes Gutenberg Univ Mainz, Inst Dev Biol & Neurobiol IDN, Mainz, Germany
[3] Univ Oxford, Sir William Dunn Sch Pathol, Oxford OX1 3RE, England
[4] Univ Zurich, Dept Mol Mech Dis, CH-8057 Zurich, Switzerland
基金
英国生物技术与生命科学研究理事会; 英国惠康基金;
关键词
BRCA MUTATION; DNA-DAMAGE; AURORA-A; SYNTHETIC LETHALITY; BREAST-CANCER; PROTEIN; REPAIR; INHIBITOR; TPX2; RESISTANCE;
D O I
10.1093/nar/gkac948
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
PARP1 mediates poly-ADP-ribosylation of proteins on chromatin in response to different types of DNA lesions. PARP inhibitors are used for the treatment of BRCA1/2-deficient breast, ovarian, and prostate cancer. Loss of DNA replication fork protection is proposed as one mechanism that contributes to the vulnerability of BRCA1/2-deficient cells to PARP inhibitors. However, the mechanisms that regulate PARP1 activity at stressed replication forks remain poorly understood. Here, we performed proximity proteomics of PARP1 and isolation of proteins on stressed replication forks to map putative PARP1 regulators. We identified TPX2 as a direct PARP1-binding protein that regulates the auto-ADP-ribosylation activity of PARP1. TPX2 interacts with DNA damage response proteins and promotes homology-directed repair of DNA double-strand breaks. Moreover, TPX2 mRNA levels are increased in BRCA1/2-mutated breast and prostate cancers, and high TPX2 expression levels correlate with the sensitivity of cancer cells to PARP-trapping inhibitors. We propose that TPX2 confers a mitosis-independent function in the cellular response to replication stress by interacting with PARP1.
引用
收藏
页码:11600 / 11618
页数:19
相关论文
共 31 条
  • [21] The KU-PARP14 axis differentially regulates DNA resection at stalled replication forks by MRE11 and EXO1
    Dhoonmoon, Ashna
    Nicolae, Claudia M.
    Moldovan, George-Lucian
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [22] An analysis of the gene interaction networks identifying the role of PARP1 in metastasis of non-small cell lung cancer
    Chen, Kai
    Li, Yajie
    Xu, Hui
    Zhang, Chunfeng
    Li, Zhiqiang
    Wang, Wei
    Wang, Baofeng
    [J]. ONCOTARGET, 2017, 8 (50) : 87263 - 87275
  • [23] R-Loop Accumulation in Spliceosome Mutant Leukemias Confers Sensitivity to PARP1 Inhibition by Triggering Transcription-Replication Conflicts
    Liu, Zhiyan Silvia
    Sinha, Sayantani
    Bannister, Maxwell
    Song, Axia
    Arriaga-Gomez, Erica
    Mckeeken, Alexander J.
    Bonner, Elizabeth A.
    Hanson, Benjamin K.
    Sarchi, Martina
    Takashima, Kouhei
    Zong, Dawei
    Corral, Victor M.
    Nguyen, Evan
    Yoo, Jennifer
    Chiraphapphaiboon, Wannasiri
    Leibson, Cassandra
    Mcmahon, Matthew C.
    Rai, Sumit
    Swisher, Elizabeth M.
    Sachs, Zohar
    Chatla, Srinivas
    Stirewalt, Derek L.
    Deeg, H. Joachim
    Skorski, Tomasz
    Papapetrou, Eirini P.
    Walter, Matthew J.
    Graubert, Timothy A.
    Doulatov, Sergei
    Lee, Stanley C.
    Nguyen, Hai Dang
    [J]. CANCER RESEARCH, 2024, 84 (04) : 577 - 597
  • [24] Ca2+-Stimulated AMPK-Dependent Phosphorylation of Exo1 Protects Stressed Replication Forks from Aberrant Resection
    Li, Shan
    Lavagnino, Zeno
    Lemacon, Delphine
    Kong, Lingzhen
    Ustione, Alessandro
    Ng, Xuewen
    Zhang, Yuanya
    Wang, Yingchun
    Zheng, Bin
    Piwnica-Worms, Helen
    Vindigni, Alessandro
    Piston, David W.
    You, Zhongsheng
    [J]. MOLECULAR CELL, 2019, 74 (06) : 1123 - +
  • [25] Kinase-independent role of nuclear RIPK1 in regulating parthanatos through physical interaction with PARP1 upon oxidative stress
    Jang, Ki-Hong
    Jang, Taeik
    Son, Eunji
    Choi, Soonjin
    Kim, Eunhee
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2018, 1865 (01): : 132 - 141
  • [26] 3D CRISPR screen in prostate cancer cells reveals PARP inhibitor sensitization through TBL1XR1-SMC3 interaction
    Zhang, Huan
    Gao, Huanyao
    Gu, Yayun
    John, August
    Wei, Lixuan
    Huang, Minhong
    Yu, Jia
    Adeosun, Adeyemi A.
    Weinshilboum, Richard M.
    Wang, Liewei
    [J]. FRONTIERS IN ONCOLOGY, 2022, 12
  • [27] Identification of Elg1 interaction partners and effects on post-replication chromatin re- formation
    Gali, Vamsi K.
    Dickerson, David
    Katou, Yuki
    Fujiki, Katsunori
    Shirahige, Katsuhiko
    Owen-Hughes, Tom
    Kubota, Takashi
    Donaldson, Anne D.
    [J]. PLOS GENETICS, 2018, 14 (11):
  • [28] Chemical proteomics reveals a γH2AX-53BP1 interaction in the DNA damage response
    Kleiner, Ralph E.
    Verma, Priyanka
    Molloy, Kelly R.
    Chait, Brian T.
    Kapoor, Tarun M.
    [J]. NATURE CHEMICAL BIOLOGY, 2015, 11 (10) : 807 - +
  • [29] Kaposi's sarcoma-associated herpesvirus processivity factor (PF-8) recruits cellular E3 ubiquitin ligase CHFR to promote PARP1 degradation and lytic replication
    Chung, Woo-Chang
    Lee, Seungrae
    Kim, Yejin
    Seo, Jong Bok
    Song, Moon Jung
    [J]. PLOS PATHOGENS, 2021, 17 (01)
  • [30] The analysis of S. cerevisiae cells deleted for mitotic cyclin Clb2 reveals a novel requirement of Sgs1 DNA helicase and Exonuclease 1 when replication forks break in the presence of alkylation damage
    Signon, Laurence
    Simon, Marie Noelle
    [J]. MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 2014, 769 : 80 - 92