New Mechanism for Photocatalytic Reduction of CO2 on the Anatase TiO2(101) Surface: The Essential Role of Oxygen Vacancy

被引:306
作者
Ji, Yongfei [1 ,2 ,3 ]
Luo, Yi [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
[3] Royal Inst Technol, Sch Biotechnol, Dept Theoret Chem & Biol, S-10691 Stockholm, Sweden
基金
中国国家自然科学基金; 瑞典研究理事会;
关键词
CARBON-DIOXIDE; CATALYTIC-REDUCTION; TIO2; NANOPARTICLES; FORMIC-ACID; DYNAMICS; WATER; PHOTOOXIDATION; METHANE; H2O; CH4;
D O I
10.1021/jacs.6b05695
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Photocatalytic reduction of CO2 into organic molecules is a very complicated and important reaction. Two possible pathways, the fast-hydrogenation (FH) path and the fast-deoxygenation (FdO) path, have been proposed on the most popular photocatalyst TiO2. We have carried out first-principles calculations to investigate both pathways on the perfect and defective anatase TiO2(101) surfaces to provide comprehensive understanding of the reaction mechanism. For the FH path, it is found that oxygen vacancy on defective surface can greatly lower the barrier of the deoxygenation processes, which makes it a more active site than the surface Ti. For the FdO path, our calculation suggests that it can not proceed on the perfect surface, nor can it proceed on the defective surface due to their unfavorable energetics. Based on the fact that the FH path can proceed both at the surface Ti site and the oxygen vacancy site, we have proposed a simple mechanism that is compatible with various experiments. It can properly rationalize the selectivity of the reaction and greatly simplify the picture of the reaction. The important role played by oxygen vacancy in the new mechanism is highlighted and a strategy for design of more efficient photocatalysts is proposed accordingly.
引用
收藏
页码:15896 / 15902
页数:7
相关论文
共 54 条
[1]   PHOTOCATALYTIC REDUCTION OF CO2 WITH H2O ON VARIOUS TITANIUM-OXIDE CATALYSTS [J].
ANPO, M ;
YAMASHITA, H ;
ICHIHASHI, Y ;
EHARA, S .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1995, 396 (1-2) :21-26
[2]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[3]   Imaging water dissociation on TiO2(110) -: art. no. 266103 [J].
Brookes, IM ;
Muryn, CA ;
Thornton, G .
PHYSICAL REVIEW LETTERS, 2001, 87 (26) :266103-1
[4]   Photocatalytic CO2 reduction by TiO2 and related titanium containing solids [J].
Dhakshinamoorthy, Amarajothi ;
Navalon, Sergio ;
Corma, Avelino ;
Garcia, Hermenegildo .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (11) :9217-9233
[5]   The surface science of titanium dioxide [J].
Diebold, U .
SURFACE SCIENCE REPORTS, 2003, 48 (5-8) :53-229
[6]   Dynamics of Interfacial Charge Transfer to Formic Acid, Formaldehyde, and Methanol on the Surface of TiO2 Nanoparticles and Its Role in Methane Production [J].
Dimitrijevic, Nada M. ;
Shkrob, Ilya A. ;
Gosztola, David J. ;
Rajh, Tijana .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (01) :878-885
[7]   Role of Water and Carbonates in Photocatalytic Transformation of CO2 to CH4 on Titania [J].
Dimitrijevic, Nada M. ;
Vijayan, Baiju K. ;
Poluektov, Oleg G. ;
Rajh, Tijana ;
Gray, Kimberly A. ;
He, Haiying ;
Zapol, Peter .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (11) :3964-3971
[8]   Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study [J].
Dudarev, SL ;
Botton, GA ;
Savrasov, SY ;
Humphreys, CJ ;
Sutton, AP .
PHYSICAL REVIEW B, 1998, 57 (03) :1505-1509
[9]  
Fujishima A., 2000, J PHOTOCH PHOTOBIO C, V1, P1, DOI [10.1016/S1389-5567(00)00002-2, DOI 10.1016/S1389-5567(00)00002-2]
[10]   A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper [J].
Gattrell, M. ;
Gupta, N. ;
Co, A. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2006, 594 (01) :1-19