Neumann series of Bessel functions

被引:16
作者
Baricz, Arpad [1 ]
Jankov, Dragana [2 ]
Pogany, Tibor K. [3 ]
机构
[1] Univ Babes Bolyai, Dept Econ, Cluj Napoca 400591, Romania
[2] Univ Osijek, Dept Math, Osijek 31000, Croatia
[3] Univ Rijeka, Fac Maritime Studies, Rijeka 51000, Croatia
关键词
Neumann series; Bessel functions; integral representation; FRACTIONAL-CALCULUS APPROACH; DIFFERENTIAL-EQUATION; GENERAL ORDER;
D O I
10.1080/10652469.2011.609483
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, Pogany and Suli [Integral representation for Neumann series of Bessel functions, Proc. Amer. Math. Soc. 137(7) (2009), pp. 2363-2368] derived a closed-form integral expression for a Neumann series of Bessel functions. In this note, our aim is to establish another kind of integral representations for the Neumann series of Bessel functions of the first kind J(v).
引用
收藏
页码:529 / 538
页数:10
相关论文
共 20 条
[1]  
[Anonymous], J FRACT CALC
[2]  
Baricz A, 2010, Lecture Notes in Mathematics, DOI DOI 10.1007/978-3-642-12230-9
[3]  
Chessin AS, 1903, CR HEBD ACAD SCI, V136, P1124
[4]  
Chessin AS, 1902, CR HEBD ACAD SCI, V135, P678
[5]   UNIFORM BOUNDS FOR BESSEL FUNCTIONS [J].
Krasikov, I. .
JOURNAL OF APPLIED ANALYSIS, 2006, 12 (01) :83-91
[6]  
LANDAU L, 2000, P S MATH PHYS QUANT, P147
[7]   A simple fractional-calculus approach to the solutions of the Bessel differential equation of general order and some of its applications [J].
Lin, SD ;
Ling, WC ;
Nishimoto, K ;
Srivastava, HM .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (9-10) :1487-1498
[8]  
Luke YL., 1962, Integrals of Bessel Functions
[9]   ASYMPTOTIC EXPRESSIONS FOR UNIT-STEP AND DIRAC DELTA FUNCTIONS [J].
NOVOMESTKY, F .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1974, 27 (04) :521-525
[10]   Upper bound on √x Jν(x) and its applications [J].
Olenko, A. Ya. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2006, 17 (06) :455-467